• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Novel 3D Back Reconstruction using Stereo Digital Cameras

Kumar, Anish Unknown Date
No description available.
12

Minimos-quadrados e aproximação de superfície de pontos: novas perspectivas e aplicações / Least squares and point-based surfaces: new perspectives and Applications

João Paulo Gois 08 May 2008 (has links)
Métodos de representação de superfícies a partir de pontos não-organizados se mantêm como uma das principais vertentes científicas que aquecem o estado-da-arte em Computação Gráfica e, significativamente, estão sendo reconhecidos como uma ferramenta interessante para definição de interfaces móveis no contexto de simulações numéricas de escoamento de fluidos. Não é difícil encontrar motivos para tais fatos: pelo lado da computação gráfica, por exemplo, a manipulação de conjuntos de pontos massivos com geometrias complexas e sujeitos a informações ruidosas ainda abre margem para novas metodologias. Já no âmbito da mecânica dos fluidos, onde os dados não são originados de \\emph tridimensionais, mas sim de interfaces entre fluidos imiscíveis, mecanismos de representação de superfícies a partir de pontos não-organizados podem apresentar características computacionais e propriedades geométricas que os tornem atrativos para aplicações em simulação de fenômenos físicos. O objetivo principal dessa tese de doutorado foi, portanto, o desenvolvimento de técnicas de representação de superfícies a partir de pontos não-organizados, que sejam capazes de suprir restrições de importantes trabalhos prévios. Nesse sentido, primeiramente focalizamos a elaboração de técnicas baseadas em formulações de mínimos-quadrados-móveis e de uma técnica robusta de partição da unidade implícita adaptativa em duas vias. Além de mecanismos de representação de superfícies a partir de pontos não-organizados, também propusemos um método promissor para representação de interfaces em simulação numérica de escoamento de fluidos multifásicos. Para isso, embasamo-nos numa abordagem Lagrangeana (livre-de-malhas), fundamentada no método dos mínimos-quadrados-móveis algébricos e apresentamos diversos resultados numéricos, estudos de convergências e comparações que evidenciam o potencial dessa metodologia para simulações numéricas de fenômenos físicos. Apesar de a contribuição principal deste trabalho ser o desenvolvimento de métodos para representação de superfícies a partir de pontos não-organizados, a experiência que adquirimos no desenvolvimento dessas técnicas nos conduziu à elaboração de mecanismos para representação de dados volumétricos não-organizados. Por conta disso, apresentamos dois mecanismos de representação a partir de dados volumétricos não-organizados com o intuito de serem aplicáveis a informações oriundas de malhas contendo células arbitrárias, isto é, propusemos a definição de um método de rendering unificado / Surface reconstruction from unorganized points has been one of the most promising scientific research areas in Computer Graphics. In addition, it has been used successfully for the definition of fluid interface in numerical simulation of fluid flow. There are several reasons to that fact: for instance, considering Computer Graphics, we have the handling of out-of-core data from complicated geometries and subject to noisy information that brings out opportunities for the development of new techniques. Further, considering Numerical Fluid Mechanics, where the input data does not come from tridimensional scanners, but from fluid interfaces, schemes that define the surface from unorganized points can offer geometrical and computational properties useful to numerical fluid flow simulation. The main goal of this project was the development of novel techniques for reconstructing surfaces from unorganized points with the capability to overcome the main drawbacks of important previous work. To that end, first we focused on the development of techniques based on moving-least-squares and on a robust twofold partition of unity Implicits. Added to the development of surface reconstruction from unorganized points, we proposed a novel scheme for defining fluid flow interfaces. We approach a meshless Lagrangian based on algebraic moving-least-squares surfaces. In addition, we presented several numerical results, convergence tests and comparisons, which state the power of the method to numerical simulation of physical phenomena. Although our main contributions were focused on surface reconstruction from points, we proposed methods to function reconstruction from unorganized volumetric data. Thus, we present two schemes to represent volumetric data from arbitrary meshes, i.e., a unified rendering scheme
13

Superfícies de pontos dinâmicas / Dynamic point set surfaces

Anderson Luis Nakano 02 April 2009 (has links)
O estudo do comportamento de fluidos é um antigo domínio das ciências da natureza. Ultimamente, fenômenos de engenharia que eram estudados empiricamente passaram a ser estudados com auxílio computacional. A Dinâmica de Fluidos Computacional (DFC) é a área da ciência da computação que estuda métodos computacionais para simulação de escoamento de fluidos, e muitas vezes é a forma mais prática, ou a única, de se observar fenômenos de interesse no escoamento. Este projeto de Mestrado procurou investigar, no âmbito da simulação de um escoamento bifásico, métodos computacionais para representar a interface entre dois fluidos imiscíveis. A separação dos fluidos por meio de uma interface é necessária para assegurar que, propriedades como viscosidade e densidade, específicas de cada fluido, sejam utilizadas corretamente para o cálculo do movimento de seus respectivos fluidos. Desenvolvemos um método lagrangeano sem a utilização de malhas com o objetivo de suprir algumas restrições de trabalhos prévios. Para representar a interface entre os dois fluidos, este método utiliza uma técnica de reconstrução de superfícies baseada em aproximações de superfícies algébricas de alta ordem. Os resultados numéricos reportados neste documento evidenciam o potencial da nossa abordagem / The study of the behaviour of fluids is an ancient field in natural sciences. Recently, engineering phenomena that were empirically studied started to be done with computacional aid. The Computational Fluid Dynamics (CFD) is the area of science that studies computational methods for computer simulation of fluid flow, and often is the most practical way, or the only, to observe phenomena of interest in flow. This Masters degree project sought to investigate, in the context of the simulation of biphasic flows, computational methods to represent the interface between two immiscible fluids. The separation of fluids by the means of an interface is required to ensure that, during the simulation, the physical properties of a fluid, like density and viscosity (specific of each fluid) are properly used in the calculus of the respective fluid motion. We developed a lagrangean method without the use of mesh with the goal of alleviating some of the previous works restrictions. To represent the interface between the two fluids, this method uses a surface reconstruction technique based on approximations of high order algebraic surfaces. The numerical results reported herein show the potential of our approach
14

A Model Integrated Meshless Solver (mims) For Fluid Flow And Heat Transfer

Gerace, Salvadore 01 January 2010 (has links)
Numerical methods for solving partial differential equations are commonplace in the engineering community and their popularity can be attributed to the rapid performance improvement of modern workstations and desktop computers. The ubiquity of computer technology has allowed all areas of engineering to have access to detailed thermal, stress, and fluid flow analysis packages capable of performing complex studies of current and future designs. The rapid pace of computer development, however, has begun to outstrip efforts to reduce analysis overhead. As such, most commercially available software packages are now limited by the human effort required to prepare, develop, and initialize the necessary computational models. Primarily due to the mesh-based analysis methods utilized in these software packages, the dependence on model preparation greatly limits the accessibility of these analysis tools. In response, the so-called meshless or mesh-free methods have seen considerable interest as they promise to greatly reduce the necessary human interaction during model setup. However, despite the success of these methods in areas demanding high degrees of model adaptability (such as crack growth, multi-phase flow, and solid friction), meshless methods have yet to gain notoriety as a viable alternative to more traditional solution approaches in general solution domains. Although this may be due (at least in part) to the relative youth of the techniques, another potential cause is the lack of focus on developing robust methodologies. The failure to approach development from a practical perspective has prevented researchers from obtaining commercially relevant meshless methodologies which reach the full potential of the approach. The primary goal of this research is to present a novel meshless approach called MIMS (Model Integrated Meshless Solver) which establishes the method as a generalized solution technique capable of competing with more traditional PDE methodologies (such as the finite element and finite volume methods). This was accomplished by developing a robust meshless technique as well as a comprehensive model generation procedure. By closely integrating the model generation process into the overall solution methodology, the presented techniques are able to fully exploit the strengths of the meshless approach to achieve levels of automation, stability, and accuracy currently unseen in the area of engineering analysis. Specifically, MIMS implements a blended meshless solution approach which utilizes a variety of shape functions to obtain a stable and accurate iteration process. This solution approach is then integrated with a newly developed, highly adaptive model generation process which employs a quaternary triangular surface discretization for the boundary, a binary-subdivision discretization for the interior, and a unique shadow layer discretization for near-boundary regions. Together, these discretization techniques are able to achieve directionally independent, automatic refinement of the underlying model, allowing the method to generate accurate solutions without need for intermediate human involvement. In addition, by coupling the model generation with the solution process, the presented method is able to address the issue of ill-constructed geometric input (small features, poorly formed faces, etc.) to provide an intuitive, yet powerful approach to solving modern engineering analysis problems.
15

Contributions en traitements basés points pour le rendu et la simulation en mécanique des fluides / Contributions in point based processing for rendering and fluid simulation

Bouchiba, Hassan 05 July 2018 (has links)
Le nuage de points 3D est la donnée obtenue par la majorité des méthodes de numérisation surfacique actuelles. Nous nous intéressons ainsi dans cette thèse à l'utilisation de nuages de points comme unique représentation explicite de surface. Cette thèse présente deux contributions en traitements basés points. La première contribution proposée est une nouvelle méthode de rendu de nuages de points bruts et massifs par opérateurs pyramidaux en espace image. Cette nouvelle méthode s'applique aussi bien à des nuages de points d'objets scannés, que de scènes complexes. La succession d'opérateurs en espace image permet alors de reconstruire en temps réel une surface et d'en estimer des normales, ce qui permet par la suite d'en obtenir un rendu par ombrage. De plus, l'utilisation d'opérateurs pyramidaux en espace image permet d'atteindre des fréquences d'affichage plus élevées d'un ordre de grandeur que l'état de l'art .La deuxième contribution présentée est une nouvelle méthode de simulation numérique en mécanique des fluides en volumes immergés par reconstruction implicite étendue. La méthode proposée se base sur une nouvelle définition de surface implicite par moindres carrés glissants étendue à partir d'un nuage de points. Cette surface est alors utilisée pour définir les conditions aux limites d'un solveur Navier-Stokes par éléments finis en volumes immergés, qui est utilisé pour simuler un écoulement fluide autour de l'objet représenté par le nuage de points. Le solveur est interfacé à un mailleur adaptatif anisotrope qui permet de capturer simultanément la géométrie du nuage de points et l'écoulement à chaque pas de temps de la simulation. / Most surface 3D scanning techniques produce 3D point clouds. This thesis tackles the problem of using points as only explicit surface representation. It presents two contributions in point-based processing. The first contribution is a new raw and massive point cloud screen-space rendering algorithm. This new method can be applied to a wide variety of data from small objects to complex scenes. A sequence of screen-space pyramidal operators is used to reconstruct in real-time a surface and estimate its normals, which are later used to perform deferred shading. In addition, the use of pyramidal operators allows to achieve framerate one order of magnitude higher than state of the art methods. The second proposed contribution is a new immersed boundary computational fluid dynamics method by extended implicit surface reconstruction. The proposed method is based on a new implicit surface definition from a point cloud by extended moving least squares. This surface is then used to define the boundary conditions of a finite-elements immersed boundary transient Navier-Stokes solver, which is used to compute flows around the object sampled by the point cloud. The solver is interfaced with an anisotropic and adaptive meshing algorithm which refines the computational grid around both the geometry defined by point cloud and the flow at each timestep of the simulation.

Page generated in 0.0663 seconds