1 |
Epigenetics and targeting mechanisms in Drosophila melanogasterFigueiredo, Margarida January 2015 (has links)
No description available.
|
2 |
Recherche du rôle des MSL dans les poils racinaires lors de la mise en place de la symbiose fixatrice d'azote chez Medicago truncatula / MSL's role in root hairs during the first step of symbiosis in Medicago truncatulaGuichard, Marjorie 21 June 2017 (has links)
La mise en place des interactions symbiotiques, existant entre les Légumineuses et des microorganismes, sont des processus finement régulés, tant sur le plan moléculaire que cellulaire. Dans le cas de la symbiose avec des bactéries fixatrices d'azote, ou rhizobia, ces modifications se déroulent dans les poils racinaires. Plusieurs arguments tendent à montrer que la perception de contraintes mécaniques pourrait avoir un rôle dans la régulation de ces étapes. Par conséquent, nous nous sommes intéressés à une famille de protéines impliquées dans la mécanotransduction: les MSL (MscS-Like). Il s'agit de canaux capables de s'ouvrir en réponse à une tension mécanique appliquée sur la membrane plasmique. Nous avons exploré leurs fonctions dans les poils racinaires, lors de la mise en place de la symbiose entre la légumineuse modèle Medicago truncatula et des rhizobia. Des études in silico du génome de M. truncatula nous ont permis de définir la famille des MtMSL. Les analyses de l'expression de ces candidats ont montré que seuls deux d'entre eux sont transcrits dans les poils racinaires: MtMSL2.1 et MtMSL2.4, ce dernier étant majoritaire. Néanmoins, leur expression ne semble pas modifiée par un traitement aux facteurs Nod, molécules bactérienne induisant les premières étapes de la signalisation symbiotique. Parallèlement, des analyses en microscopie confocale, indiquent la présence de MtMSL2.4 à la membrane plasmique et dans des endomembranes. De plus, des mesures électrophysiologiques ont confirmé leur nature de canal à forte conductance activé par la tension de membrane. Enfin, plusieurs analyses phénotypiques ont été menées sur des mutants Mtmsl2.4, tant sur différents aspects de l'interaction avec les rhizobia, que sur la croissance racinaire ou celle des poils racinaires, pour laquelle une méthode de mesure semi-automatique a été développée. Cependant aucune différence avec les contrôles n'a pu être observée. Ces résultats laissent penser que le canal mécanosensible MtMSL2.4 aurait un rôle lors d'autres phénomènes qu'il serait intéressant de découvrir. / The first steps of symbiosis occurring between Legumes and microorganisms are highly regulated processes, both at the molecular level and at the cellular level. During symbiosis with nitrogen fixing bacteria, called rhizobia, these modifications occur in root hairs. Several arguments have shown that mechanical constraints may regulate these steps. Hence, the involvement of physical sensors during these early events is worth considering. We focused here on one of these sensor families, the MSL (MscS-Like). These proteins are channels able to open upon mechanical stretching. We look for their role during first steps of symbiosis between the model Legumes Medicago truncatula and rhizobia. In silico studies of M. truncatula's genome allowed us to define a MtMSL family. Transcript analyses showed that only two of them were expressed in root hairs: MtMSL2.1 and MtMSL2.4, the latter being the most expressed. However, this expression is not modified by Nod factor treatments; molecules produced by rhizobia that induces the first symbiotic signalization steps. In parallel, confocal microscopy analyses show plasma membrane and endomembrane localization of MtMSL2.4. Moreover, electrophysiological measurements confirmed that this candidate is a high conductance channel mechanically activated. Finally, we performed several phenotypical studies with Mtmsl2.4 mutants in different conditions. No differences were observed between the mutants and WT during rhizobia symbiotic interaction and root growth. There were also no differences observed in root hair development, for which a partly automatic measurement system was set up. These results suggest MtMSL2.4 may have a role in other phenomena, which could be interesting to understand further.
|
3 |
Mining DNA elements involved in targeting of chromatin modifiersPhilip, Philge January 2014 (has links)
Background: In all higher organisms, the nuclear DNA is condensed into nucleosomes that consist of DNA wrapped around a core of highly conserved histone proteins. DNA bound to histones and other structural proteins form the chromatin. Generally, only few regions of DNA are accessible and most of the time RNA polymerase and other DNA binding proteins have to overcome this compaction to initiate transcription. Several proteins are involved in making the chromatin more compact or open. Such chromatin-modifying proteins make distinct post-translational modifications of histones – especially in the histone tails – to alter their affinity to DNA. Aim: The main aim of my thesis work is to study the targeting of chromatin modifiers important for correct gene expression in Drosophila melanogaster (fruit flies). Primary DNA sequences, chromatin associated proteins, transcription, and non-coding RNAs are all likely to be involved in targeting mechanisms. This thesis work involves the development of new computational methods for identification of DNA motifs and protein factors involved in the targeting of chromatin modifiers. Targeting and functional analysis of two chromatin modifiers, namely male-specific lethal (MSL) complex and CREB-binding protein (CBP) are specifically studied. The MSL complex is a protein complex that mediates dosage compensation in flies. CBP protein is known as a transcriptional co-regulator in metazoans and it has histone acetyl transferase activity and CBP has been used to predict novel enhancers. Results: My studies of the binding sites of MSL complex shows that promoters and coding sequences of MSL-bound genes on the X-chromosome of Drosophila melanogaster can influence the spreading of the complex along the X-chromosome. Analysis of MSL binding sites when two non-coding roX RNAs are mutated shows that MSL-complex recruitment to high-affinity sites on the Xchromosome is independent of roX, and the role of roX RNAs is to prevent binding to repeats in autosomal sites. Functional analysis of MSL-bound genes using their dosage compensation status shows that the function of the MSL complex is to enhance the expression of short housekeeping genes, but MSL-independent mechanisms exist to achieve complete dosage compensation. Studies of the binding sites of the CBP protein show that, in early embryos, Dorsal in cooperation with GAGA factor (GAF) and factors like Medea and Dichaete target CBP to its binding sites. In the S2 cell line, GAF is identified as the targeting factor of CBP at promoters and enhancers, and GAF and CBP together are found to induce high levels of polymerase II pausing at promoters. In another study using integrated data analysis, CBP binding sites could be classified into polycomb protein binding sites, repressed enhancers, insulator protein-bound regions, active promoters, and active enhancers, and this suggested different potential roles for CBP. A new approach was also developed to eliminate technical bias in skewed experiments. Our study shows that in the case of skewed datasets it is always better to identify non-altered variables and to normalize the data using only such variables.
|
4 |
DNA Replication of the Male X Chromosome Is Influenced by the Dosage Compensation Complex in Drosophila melanogasterDeNapoli, Leyna January 2013 (has links)
<p>Abstract</p><p>DNA replication is an integral part of the cell cycle. Every time a cell divides, the entire genome has to be copied once and only once in a timely manner. In order to accomplish this, DNA replication begins at many points throughout the genome. These start sites are called origins of replication, and they are initiated in a temporal manner throughout S phase. How these origins are selected and regulated is poorly understood. Saccharomyces cerevisiae and Schizosaccharomyces pombe have autonomously replicating sequences (ARS) that can replicate plasmids extrachromosomally and function as origins in the genome. Metazoans, however, have shown no evidence of ARS activity.</p><p>DNA replication is a multistep process with several opportunities for regulation. Potential origins are marked with the origin recognition complex (ORC), a six subunit complex. In S. cerevisiae, ORC binds to the ARS consensus sequence (ACS), but no sequence specificity is seen in S. pombe or in metazoans. Therefore, factors other than sequence play a role in origin selection.</p><p>In G1, the pre-replicative (pre-RC) complex assembles at potential origins. This involves the recruitment of Cdc6 and Cdt1 to ORC, which then recruits MCM2-7 to the origin. In S phase, a subset of these pre-RC marked origins are initiated for replication. These origins are not fired simultaneously; instead, origins are fired in a temporal manner, with some firing early, some firing late, and some not firing at all.</p><p>The temporal firing of origins leads to wide regions of the genome being copied at different times during S phase. , which makes up the replication timing profile of the genome. These regions are not random, and several correlations between replication timing and both transcriptional activity and chromosomal landscape. Regions of the genome with high transcriptional activity tend to replicate earlier in S phase, and it is well know that the gene rich euchromatin replicates earlier than the gene poor heterochromatin. Additionally, areas of the genome with activating chromatin marks also replicate earlier than regions with repressive marks. Though many correlations have been observed, no single mark or transcriptional player has been shown to directly influence replication timing.</p><p>We mapped the replication timing profiles of three cell lines derived from Drosophila melanogaster by pulsing cells with the nucleotide analog bromodeoxyuridine (BrdU), enriching for actively replicating DNA labeled with BrdU, sequencing with high throughput sequencing and mapping the sequences back to the genome. We found that the X chromosome of the male cell lines replicated earlier than the X chromosome in the female cell line or the autosomes. We were then able to compare the replication timing profiles to data sets for chromatin marks acquired through the modENCODE (model organism Encyclopedia Of DNA Elements). We found that the early replicating regions of the male X chromosomes correlates with acetylation of lysine 16 on histone 4 (H4K16).</p><p>Hyperacetylation of H4K16 on the X chromosome in males is a consequence of dosage compensation in D. melanogaster. Like many organisms, D. melanogaster females have two X chromosomes while males have one. To compensate for this difference, males upregulate the genes on the X chromosome two-fold. This upregulation is regulated by the dosage compensation complex (DCC), which is restricted to the X chromosome. This complex includes a histone acetyl transferase, MOF, which acetylates H4K16. This hyperacetylation allows for increased transcription of the X chromosome. </p><p>We hypothesized that the activities of the DCC and the hyperacetylation of H4K16 also influences DNA replication timing. To test this, I knocked down components of the DCC (MSL2 and MOF) using RNAi. Cells were arrested in early S phase with hydroxyurea, released, and pulsed with the nucleotide analog EdU. The cells were arrested in metaphase and labeled for H4K16 acetylation and EdU. We found that male cells were preferentially labeled with EdU on the X chromosome, which corresponded with H4k16 acetylation. When the DCC was knocked down, H4K16 acetylation was lost along with preferential EdU labeling on the X chromosome. These results suggest that the DCC and H4K16 acetylation are necessary for early replication of the X chromosome. Additionally, early origin mapping of different cell lines showed that while ORC density does not differ between male and female cell lines, early origin usage is increased on the X chromosome of males, suggesting that this phenomenon is regulated at the level of activation, not pre-RC formation. Other experiments in female cell lines have been unclear about whether the DCC and subsequent H4K16Ac is sufficient for early X replication. However, these results are exciting because this is, to our knowledge, the first mark that has been found to directly influence replication timing.</p><p>In addition to these timing studies, I attempted to design a new way to map origins. A consequence of unidirectional replication with bidirectional replication fork movement is Okazaki fragments. These are short nascent strands on the lagging strand of replicating DNA. Because these fragments are small, we can isolate them by size and map them back to the genome. Okazaki density could tell us about origin usage and any directional preferences of origins. The process proved to be tedious, and although they mapped back with a higher density around ORC binding sites than randomly sheared DNA, little information about origin usage was garnered from the data. Additionally, the process proved difficult to repeat.</p><p>In these studies, we examined the replication timing program in D. melanogaster. We found that the male X chromosome replicates earlier in S phase, and this early replication is regulated by the DCC. However, it is unclear if the change in chromatin landscape directly influences replication or if the replication program is responding to other dosage compensation cues on the X chromosome. Regardless, we have found one the first conditions in which a mark directly influences the DNA replication timing program. </p> / Dissertation
|
5 |
Aneuploidy compensatory mechanisms and genome-wide regulation of gene expression in Drosophila melanogasterLundberg, Lina January 2013 (has links)
Stimulation or repression of gene expression by genome-wide regulatory mechanisms is an important epigenetic regulatory function which can act to efficiently regulate larger regions or specific groups of genes, for example by compensating for loss or gain of chromosome copy numbers. In Drosophila melanogaster there are two known chromosome-wide regulatory systems; the MSL complex, which mediates dosage compensation of the single male X-chromosome and POF, which stimulates expression from the heterochromatic 4th chromosome. POF also interacts with the heterochromatin inducing protein HP1a, which represses expression from the 4th chromosome but which also has been assigned stimulatory functions. In addition to these two, there is another more elusive and less well-characterized genome-wide mechanism called buffering, which can act to balance transcriptional output of aneuploidy regions of the genome (i.e. copy number variation). In my thesis, I describe the presence of a novel physical link between dosage compensation and heterochromatin; mediate by two female-specific POF binding sites, proximal to roX1 and roX2 on the X chromosome (the two non-coding RNAs in the MSL complex). These sites can also provide clues to the mechanisms behind targeting of chromosome-specific proteins. Furthermore, to clarify the conflicting reports about the function of HP1a, I have suggested a mechanism in which HP1a has adopted its function to different genomic locations and gene types. Different binding mechanisms to the promoter vs. the exon of genes allows HP1a to adopt opposite functions; at the promoter, HP1a binding opens up the chromatin structure and stimulates gene expression, whereas the binding to exons condense the chromatin and thus, represses expression. This also causes long genes to be more bound and repressed by HP1a. Moreover, I show that buffering of monosomic regions is a weak but significant response to loss of chromosomal copy numbers, and that this is mediated via a general mechanism which mainly acts on differentially expressed genes, where the effect becomes stronger for long genes. I also show that POF is the factor which compensates for copy number loss of chromosome 4.
|
6 |
Chromosome-wide gene regulatory mechanisms in Drosophila melanogasterJohansson, Anna-Mia January 2010 (has links)
In Drosophila there are two different chromosome-wide targeting systems, the dosage compensation system that equalizes the transcriptional output from X-linked genes between males and females, and the regulation of the 4th chromosome mediated by the POF protein. The best studied of these two mechanisms is the dosage compensation system. To attain dosage compensation in Drosophila at least five different proteins, encoded by the male-specific lethal genes msl1, msl2, msl3, mle and mof, are required. These proteins together with two non-coding RNAs (roX1 and roX2) form a dosage compensation complex (MSL complex), which binds exclusively to the X chromosome in Drosophila males and up-regulates the transcription approximately two times. In this thesis I show that roX1 and roX2 are most likely the only non-coding RNAs within the MSL complex. As expected, the roX transcripts were enriched within the MSL complex. Interestingly, one additional transcript was identified within the MSL complex. This transcript did not associate with the X chromosome and is therefore not believed to be involved in up-regulation of the X-linked genes. This transcript encodes for the rate limiting component in the MSL complex, the MSL2 protein. A model is proposed in which free, partial or complete, MSL complex feed-back regulates the amount of msl2 transcript, and thereby limits the MSL complex production. The second chromosome-wide regulatory system in flies acts on an autosome, the heterochromatic 4th chromosome. This regulation is a balancing mechanism between at least two different proteins, the chromosome 4 specific protein painting of fourth (POF) and heterochromatin protein 1 (HP1). POF binds to nascent RNAs transcribed from the 4th chromosome and HP1 target the same set of genes at the chromatin level. POF stimulates the transcribed genes, while HP1 represses them; together they create the most optimal condition for these genes. This type of balancing mechanism may be a more general way to fine-tune transcription at a chromosome-wide level and raises the question about autosomal gene regulation as a general mechanism.
|
7 |
LES Simulation of Hot-wire AnemometersSüer, Assiye January 2017 (has links)
Hot wire anemometers have been used in several wind velocity sensors deployed in Mars. They are based in keeping the temperature of a surface at a constant value, above the ambient. This is done by means of a heater controlled with an electronic system. The cooling rate of each point at the sensor surface can be used to calculate the wind velocity and direction. However, due to turbulent fluctuations, the cooling rate is not constant even in the case of constant velocity. Moreover, RANS simulations cannot estimate such fluctuations as they only provide an estimation of the averaged flow field. The goal of this work has been to estimate such fluctuations and the e↵ect they might have on the sensor readings. To do so, the turbulent cooling rate (Nusselt number) of a sensor with a generic shape, under the typical conditions to be find in Mars, has been simulated using high performance LES (Large Eddy Simulation) simulations and compared with RANS and URANS simulations.
|
8 |
Drosophila UNR: a factor involved in the translational regulation of dosage compensationAbaza, Irina 03 November 2006 (has links)
Dosage compensation is a mechanism that equalizes the expression of X-linked genes in those organisms in which males and females differ in the number of X chromosomes. In Drosophila melanogaster, dosage compensation is achieved by up-regulating the transcription of the single male X chromosome. This effect is mediated by a chromatin remodeling complex known as the Male Specific Lethal (MSL) complex or Dosage Compensation Complex (DCC). In female flies, dosage compensation is inhibited primarily because of the translational repression of the mRNA encoding one of the DCC subunits, MSL-2, by the female-specific RNA binding protein Sex-lethal (SXL). To inhibit translation, SXL binds to poly(U) stretches present in both the 5’ and 3’ UTRs of msl-2 mRNA. Sequences adjacent to those SXL-binding sites in the 3´UTR are also required for translation inhibition and are bound by co-repression.
In this thesis work, we have designed an affinity chromatography assay to isolate the putative co-repressor(s), and have identified the protein Upstream of N-ras (UNR). Drosophila UNR (dUNR) is an ubiquitous, conserved protein that contains 5 cold shock domains (CSD) and a glutamine- (Q) rich amino- terminal extension. We show that dUNR is a necessary co-factor for SXL-mediated msl-2 repression. SXL recruits dUNR to the 3’ UTR of msl-2 mRNA, imparting a sex-specific function to this ubiquitous protein. Domain mapping experiments indicate that dUNR interacts with SXL and msl-2 mRNA through CSD1, and that the domains for translation inhibition and SXL interaction can be distinguished. Our data indicate that the Q-rich domain, together with CSDs 1 and 2, plays an important role in translational repression, and suggest that factors in addition to dUNR and SXL are required for repression of msl-2 mRNA. Using a combination of UNR immunoprecipitation and microarray analysis, we have identified the mRNAs that are bound to dUNR in male and female flies. Our results suggest that dUNR is not only a novel regulator of dosage compensation, but also a general post-transcriptional regulator of gene expression.
|
9 |
An?lise da vulnerabilidade de Natal/RN frente ?s mudan?as clim?ticasSilva, Fl?via Janiny Oliveira da 01 March 2012 (has links)
Made available in DSpace on 2014-12-17T15:03:30Z (GMT). No. of bitstreams: 1
FlaviaJOS_DISSERT.pdf: 4545254 bytes, checksum: 8007b71d878dc66ff6976e4134e566bb (MD5)
Previous issue date: 2012-03-01 / The interaction between land and water, resulting from dynamic agents, such as wind, waves and tides, characterizes the coastal zone as a dynamic environment that is constantly disturbed and that may alter the balance of natural and man-made environment. Such modifications may be intensified when considering the climate change. This environment is highly attractive for the development of economic activities and urbanization, current scenario of the city of Natal. Weighing the economic importance for the state and the physical environment in which the capital of Rio Grande do Norte is inserted, this study aims to identify and analyze vulnerabilities and impacts caused by the rising sea level in the municipality. To that end, we defined a coastline, delimited areas susceptible to flooding and presented some flood scenarios. This way we could identify and analyze the impacts of each flood scenario in its respective section. Finally, it appears that the coastal zone in which Natal is inserted is a fragile area that requires actions aimed at mitigating vulnerabilities and facing the problem that caused the rise in the mean sea level (MSL), and mitigating the presented vulnerability framework; it is necessary to implement actions that effectively contribute to the protection and adaptation of the most fragile areas / A intera??o entre terra, ?gua que resultam em agentes din?micos, como por exemplo, ventos, ondas e mar?s caracteriza a zona costeira como um ambiente din?mico que, constantemente, sofre perturba??es que podem alterar o equil?brio natural e antr?pico do meio. Tais modifica??es podem ser intensificadas quando considerados os eventos relacionados ?s mudan?as clim?ticas. ? neste espa?o que se verifica o enorme atrativo para desenvolvimento de atividades econ?micas e urbaniza??o, cen?rio no qual se encontra o munic?pio de Natal. Ponderando a relev?ncia econ?mica para o estado e o meio f?sico na qual a capital do RN est? inserida o presente trabalho objetiva identificar e analisar as vulnerabilidades e impactos provocados pela eleva??o do n?vel m?dio do mar no munic?pio. Para tanto, foi definida uma linha de costa, delimitado trechos suscept?veis ?s zonas de inunda??o e apresentados alguns cen?rios de inunda??o. Com isso, puderam ser identificado e analisado cada cen?rio de inunda??o, em seu respectivo trecho, os impactos provocados. Por fim, verifica-se que a zona costeira na qual Natal est? inserida ? um espa?o fr?gil que necessita de a??es que visem mitigar as vulnerabilidades existentes e que para encarar a problem?tica decorrente da eleva??o do NMM e a mitiga??o do quadro de vulnerabilidade apresentado, faz-se necess?ria a aplica??o de medidas pol?ticas e a??es que contribuam, de forma eficaz, para a prote??o e adapta??o das ?reas mais fr?geis
|
10 |
Cell disorders in lysosomal storage diseases / Défauts cellulaires dans les maladies de surcharge lysosomaleRoy, Elise 17 February 2012 (has links)
La mucopolysaccharidose IIIB (MPSIIIB) est une maladie de surcharge lysosomale (MSL) causée par une accumulation d’oligosaccharides d’héparane sulphate (OHS), induisant chez les enfants atteints un retard mental progressif, une neurodégénérescence et une mort prématurée. Les mécanismes physiopathologiques impliqués sont mal compris. Il est nécessaire d’élucider ces mécanismes, afin d’évaluer l’efficacité d’un traitement par thérapie génique en regard de la perte de la plasticité neuronale, et pour définir les meilleures conditions de traitement. Pour cela, de nouveaux modèles cellulaires de la maladie ont été créés. Des cellules souches pluripotentes induites ont été générées à partir de fibroblastes de patients, lesquelles ont ensuite été différenciées en une lignée neuronale. Un modèle HeLa a également été créé dans lequel l’expression de shRNAs dirigés contre la a-N-acétylglucosaminidase (NAGLU), l’enzyme manquante dans la MPSIIIB, est induite par la tétracycline. Ces modèles ont été isolés avec succès, et présentent les caractéristiques pathologiques fondamentales de la MPSIIIB. L’étude de ces modèles a montré que : I) Les OHS excrétés dans la matrice extracellulaire modifient la perception cellulaire des signaux environnementaux, affectant les voies de signalisation en aval avec des conséquences sur la morphologie du Golgi. II) L’accumulation de vésicules de stockage intracellulaires qui caractérisent les MSLs est due à la surexpression de la protéine cis-golgienne GM130 et aux altérations du Golgi qui en résultent. Ces vésicules sont possiblement des lysosomes anormaux formés dans le Golgi cis et médian qui sont déroutés à une étape précoce de la biogenèse du lysosome, donnant naissance à un compartiment « cul-de-sac ». III) D’autres fonctions cellulaires contrôlées par GM130 sont affectées dont la morphologie du centrosome ou la nucléation des microtubules. Ces données suggèrent de possibles conséquences sur la polarisation et la migration cellulaire, et la neuritogenèse. / Mucopolysaccharidosis type IIIB (MPSIIIB) is a lysosomal storage disease (LSD) characterized by accumulation of heparan sulfate oligosaccharides (HSO), which results in progressive mental retardation, neurodegeneration and premature death in children. The underlying mechanisms are poorly understood. Coming to a better understanding of the pathophysiology of MPSIIIB has become a necessity to assess the efficacy of gene therapy treatment regarding loss of neuronal plasticity, and to define the best conditions for treatment. To address the link between HSO accumulation and downstream pathological events, new cell models of MPSIIIB were created. First, induced pluripotent stem cells (iPSc) were generated from fibroblasts of affected children, followed by differentiation of patient-derived iPSc into a neuronal progeny. Second, a HeLa cell model was created in which expression of shRNAs directed against a-N-acetylglucosaminidase (NAGLU), the deficient enzyme in MPSIIIB, is induced by tetracycline. Success in the isolation of these different models was pointed by the presence of cardinal features of MPSIIIB cell pathology. Studies in these models showed that: I) HSO excreted in the extracellular matrix modifies cell perception of environmental cues, affecting downstream signalling pathways with consequences on the Golgi morphology. II) Accumulation of intracellular storage vesicles, a hallmark of LSDs is due to overexpression of the cis-Golgi protein GM130 and subsequent Golgi alterations. It is likely that these vesicles are abnormal lysosomes formed in the cis- and medial-Golgi which are misrouted at an early step of lysosome biogenesis, giving rise to a dead-end compartment. III) Other cell functions controlled by GM130 are affected, including centrosome morphology and microtubule nucleation. These data point to possible consequences on cell polarization, cell migration and neuritogenesis.
|
Page generated in 0.0476 seconds