• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 65
  • 59
  • 23
  • 10
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 337
  • 59
  • 50
  • 48
  • 46
  • 45
  • 41
  • 41
  • 36
  • 33
  • 31
  • 30
  • 27
  • 26
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Contrôle de la masse et du phénotype musculaires en hypoxie : leçons tirées de modèles de croissance du muscle squelettique chez le rongeur

Chaillou, Thomas 08 December 2011 (has links) (PDF)
Le muscle squelettique s'adapte en réponse à diverses influences en modulant sa masse et ses propriétés contractiles et métaboliques. Il est ainsi rapporté que l'hypoxie sévère a un effet délétère sur la masse et les capacités oxydatives du muscle, et pourrait ralentir la maturation du phénotype contractile au cours du développement post-natal. Cependant, les mécanismes de contrôle de cette plasticité musculaire ne sont pas clairement identifiés. Le but de ce travail était de déterminer le rôle de l'hypoxie environnementale sur le contrôle de la masse et l'adaptation du phénotype du muscle en croissance (hypertrophie de surcharge du plantaris après ablation de ses muscles agonistes et régénération du soléaire après lésions étendues induites par la notexine). L'exposition hypoxique limite transitoirement l'hypertrophie induite par la surcharge fonctionnelle, tandis qu'elle accentue la fonte musculaire en réprimant la formation et la croissance des néo-fibres au cours des étapes précoces de la régénération. Ces résultats seraient en partie expliqués par la désactivation partielle de la principale voie de protéosynthèse, la voie mTOR, par un mécanisme indépendant d'Akt. Parmi les inhibiteurs endogènes de mTOR étudiés (REDD1, BNIP-3 et l'AMPK), nous montrons que l'activation prononcée de l'AMPK en hypoxie pourrait réprimer l'activité de mTOR au cours de la régénération, alors que le mécanisme responsable de l'inhibition de mTOR n'a pas pu être identifié dans le modèle de surcharge. Le système protéolytique ubiquitine/protéasome-dépendant, évalué à partir de l'expression des atrogènes MURF1 et MAFbx, pourrait également expliquer en partie l'altération de l'hypertrophie de surcharge en hypoxie. Nos résultats soulignent par ailleurs que l'activité des cellules satellites serait réprimée au cours des premiers jours de régénération musculaire, conduisant à réduire la formation et la croissance des myotubes. Malgré cette perturbation précoce de la croissance musculaire, l'exposition prolongée en hypoxie ne limite pas l'hypertrophie de surcharge et la récupération de la masse du muscle lésé. Ceci démontre que les signaux anaboliques induits dans ces deux situations de croissance musculaire l'emportent très largement sur les signaux cataboliques de l'hypoxie. L'analyse des propriétés métaboliques et contractiles met en évidence que l'hypoxie altère les capacités oxydatives du muscle en croissance, mais les mécanismes impliqués dans cette réponse adaptative restent à identifier. Par ailleurs, l'hypoxie ne constitue pas un stimulus métabolique suffisant pour altérer la transition du phénotype contractile du muscle en surcharge et la récupération complète du phénotype contractile du muscle lésé. Elle contribue uniquement à ralentir très modérément et transitoirement l'adaptation phénotypique du muscle en surcharge, et à modifier le profil contractile du muscle durant la phase de dégénérescence musculaire.
312

Mécanismes moléculaires du contrôle de la masse musculaire sous l'action du β2-agoniste formotérol

Joassard, Olivier 15 July 2013 (has links) (PDF)
Les β2-agonistes sont couramment utilisés pour prévenir et réduire les symptômes de l'asthme et de la bronchoconstriction induite par l'exercice. Mais, pris en quantités supérieures aux doses thérapeutiques, les β2-agonistes ont un effet anabolisant qui a été clairement démontré in vivo. Un certain nombre d'acteurs sont mis en jeu dans la réponse biologique du tissu musculaire aux β2-agonistes. L'un de ces acteurs est la voie de signalisation PI3K/Akt/mTOR, voie d'initiation de la traduction, ayant un rôle majeur dans la synthèse protéique. Dans ce contexte, notre première étude avait pour objectif de déterminer la cinétique des événements moléculaires responsables de l'hypertrophie du muscle squelettique de rat après administration de formotérol pendant 1 jour (J1), 3 jours (J3) et 10 jours (J10). Nous avons montré que l'administration de formotérol induisait une hypertrophie musculaire à J3 et J10 associée à l'activation transitoire de la voie de signalisation PI3K/Akt/mTOR (J1 et J3), et à une diminution de l'expression de l'E3 ubiquitine ligase MAFbx/Atrogin-1 (J3). La voie autophagie lysosome ne semblait pas être affectée. Ainsi, l'ensemble de ces résultats suggère que l'activation de la voie PI3K/Akt/mTOR est associée à la voie ubiquitine-protéasome mais pas à la voie autophagie-lysosome. La régulation transitoire de la voie PI3K/Akt/mTOR suggère que d'autres voies de signalisation sont impliquées dans l'hypertrophie musculaire induite par le formotérol. Le 007-AM, analogue de l'AMPc, a été décrit comme pouvant stimuler la voie de signalisation PI3K/Akt/mTOR via l'activation de la protéine Epac, suggérant que le 007-AM puisse constituer une molécule de substitution à l'utilisation des β2-agonistes. Notre seconde étude avait pour but de déterminer si le 007-AM avait une action anabolisante sur le tissu musculaire, mais également de déterminer si la 007-AM était une molécule stable permettant d'envisager son usage dans un cadre pharmacologique. L'administration de 007-AM pendant 7 jours chez des souris n'engendrait pas d'hypertrophie musculaire. En revanche, in vitro sur cellules C2C12, le 007-AM activait la voie de signalisation PI3K/Akt/mTOR comme en témoignait l'augmentation de la phosphorylation des protéines rpS6 et 4E-BP1. Nos résultats montraient également que le 007-AM était instable dans le plasma alors que son produit de dégradation, le 007 était plus stable. Pris ensembles, ces résultats suggèrent qu'un traitement de 7 jours au 007-AM n'est pas suffisant pour induire une hypertrophie musculaire et que l'absence d'hypertrophie musculaire pourrait provenir de l'instabilité du 007-AM dans le plasma. Toutefois, des études supplémentaires seront nécessaires pour confirmer ces résultats
313

Regulatory role of the mechanistic target of Rapamycin (mTOR) on the expression of osmotic stress response genes in mammalian cells

Ortells Campos, Mª Carmen, 1984- 26 July 2012 (has links)
Adaptive responses allow cells to maintain their growth as well as their proliferative potential under diverse stress conditions. It is known that, growth and proliferation can be suppressed by intense stress, but maintained under tolerable stress conditions under which cells can induce compensatory responses. The kinase mTOR is a central regulator of proliferative and growing capacity in mammalian cells, and has been shown to be sensitive to diverse stressors. However, little is known about the role played by mTOR in the adaptive responses that cells utilize to resist stress and maintain their growth capacity. We addressed this question in the context of osmotic stress, to which cells can adapt by inducing the transcription of specialized genes. We showed that mTOR is active under moderate osmostress conditions and regulates the induction of a set of genes by mechanisms dependent and independent of NFAT5, the main transcription factor involved in the transcription of genes upon hypertonic stress. In addition, we observed that the overall set of genes whose induction was sensitive to mTOR activity is enriched in regulators of growth and proliferation. We also have identified REDD1 and REDD2 as two osmostress and mTOR-dependent induced genes, which previously had been characterized in other stress contexts acting as negative regulators of the mTORC1 pathway. We observed that mTOR promoted changes in chromatin predisposing it towards a transcriptional permissive configuration, with higher levels of acetylated histone H4 and increased recruitment of active RNA-pol II to promoters as well as transcribed regions. Altogether, the results described in this thesis reveal a new role for the mTOR kinase in the regulation of gene expression to facilitate the cellular adaptive response upon osmostress. / Las respuestas adaptativas frente al estrés permiten a las células mantener su crecimiento así como su potencial proliferativo. Aunque se ha establecido que el crecimiento y la proliferación celular pueden inhibirse en respuesta a un estrés intenso, en situaciones de estrés tolerable las células pueden mantener su crecimiento y proliferación mediante la inducción de respuestas compensatorias. La quinasa mTOR es una proteína clave para el mantenimiento de la capacidad proliferativa y del crecimiento en las células de mamífero; además se ha descrito que es sensible a varios estreses. Sin embargo, poco se sabe acerca del papel que juega en las respuestas de adaptación que son utilizadas por las células para resistir el estrés y mantener así su capaciad de crecimiento. Nuestro trabajo se ha centrado en el ámbito del estrés osmótico, en cuyo caso las células pueden adaptarse mediante la transcripción de diversos genes especializados. Nuestro estudio demuestra que mTOR se encuentra activo en condiciones moderadas de estrés osmótico y regula la indución de un conjunto de genes mediante mecanismos dependientes e independientes de NFAT5, el principal factor de transcripción responsable de la transcripción de genes en respuesta a un estrés hipertónico. Además, observamos que la mayoría de los genes cuya inducción es sensible a la actividad de mTOR tienen funciones en la regulación del crecimiento y de la proliferación. También hemos identificado a REDD1 y REDD2 como genes que se inducen en respuesta a estrés osmótico dependientes de mTOR, y que con anterioridad se habían caracterizado en otros escenarios de estrés actuando como reguladores negativos de la ruta de señalización de mTORC1. Por último hemos observado que mTOR origina cambios en la cromatina, promoviendo una configuración permisiva para la transcripción, con un incremento de la acetilación de la histona H4 y un aumento en el reclutamiento de la forma activa de la RNA-polimerasa II en los promotores y regiones transcritas de ciertos genes. En resumen, los resultados descritos en esta tesis muestran un nuevo papel de la quinasa mTOR en la regulación de la expresión génica facilitando así la respuesta de adaptación celular frente al estrés osmótico.
314

TRK-Fused Gene (TFG), une protéine impliquée dans le système de sécrétion de protéines, est une composante essentielle de la réponse antivirale innée

Marineau, Alexandre 11 1900 (has links)
No description available.
315

Étude de la voie de signalisation du facteur de croissance épidermique HB-EGF et de son récepteur dans la cellule β-pancréatique

Maachi, Hasna 12 1900 (has links)
Le diabète de type 2 (DT2) est caractérisé par une résistance à l’action de l’insuline et une dysfonction des cellules β pancréatiques. Il apparait lorsque la cellule β devient incapable d’augmenter sa masse fonctionnelle afin de compenser la résistance périphérique à l’action de l’insuline. L’identification de molécules capables de stimuler la réplication des cellules β et ainsi de préserver leur masse fonctionnelle aurait donc un intérêt thérapeutique majeur. Nous avons établi un modèle d’excès de nutriments in vivo chez le rat, dans lequel nous avons observé qu’une augmentation de la prolifération des cellules β associée à une augmentation de l’expression du facteur de croissance « heparin-binding EGF-like growth factor » (HB-EGF). L’objectif de cette thèse était de valider l’effet mitogène du HB-EGF sur les cellules β de rats et humaines, puis d’identifier le mécanisme d’activation de la voie HB-EGF-EGFR. Dans une première étude, nous avons démontré ex vivo que le facteur croissance HB-EGF stimule la prolifération des cellules β pancréatiques d’îlots isolés de rats et humains via l’activation de son récepteur EGFR. Nous avons également observé que la stimulation de la prolifération des cellules β de rats par le glucose nécessite l’activation de la voie de signalisation HB-EGF-EGFR par un mécanisme qui implique à la fois une augmentation de l’expression du gène codant pour HB-EGF via le facteur de transcription ChREBP, et l’activation du récepteur EGFR via une protéine de la famille des protéines Src tyrosine kinase. Les cellules β des îlots humains étant réfractaires à la prolifération, il est essentiel de confirmer les résultats obtenus chez les rongeurs dans des tissus humains. Nous avons observé un effet mitogène d’HB-EGF sur les cellules β humaines. En revanche, nous n’avons pas pu détecter de manière reproductible un effet stimulant du glucose sur la prolifération des cellules β humaines. Notre deuxième étude a donc consisté à identifier la technique la plus appropriée pour mesurer la prolifération des cellules β humaines. Nous avons comparé systématiquement la mesure de la prolifération en réponse à divers stimuli par cytométrie en flux ou par immunohistochimie sur des îlots intacts ou dispersés. Nous avons testé trois facteurs mitogènes soit le glucose, l’HB-EGF et l’harmine. Nous avons observé que l’HB-EGF et l’harmine stimulent la prolifération des cellules β et non β indépendamment de la méthode utilisée. En revanche, l’action mitogène du glucose semble être dépendante de la méthode. En conclusion, nous avons d’abord démontré que l’effet mitogène du glucose nécessite l’activation de la voie de signalisation HB-EGF-EGFR. Ensuite, nous avons observé que la mesure de la prolifération des cellules β humaines par cytométrie en flux offre plusieurs avantages par rapport à l’immunohistochimie. / Type 2 diabetes (T2D) is characterized by peripheral insulin resistance and pancreatic β-cell dysfunction. T2D occurs when β cells become unable to increase their functional mass in order to compensate for insulin resistance. The identification of molecules capable of stimulating β-cell replication to preserve their functional mass would therefore be of major therapeutic interest. We previously established a model of nutrient excess in which we observed an increase in β-cell proliferation associated with enhanced expression of the growth factor "heparin-binding EGF-like growth factor" (HB-EGF). The objective of the work presented in this thesis was to test the hypothesis that HB-EGF stimulates both rodent and human β-cell proliferation and to identify the underlying mechanisms. In a first study, we demonstrated ex vivo that HB-EGF stimulates pancreatic β-cell proliferation of isolated rat and human islets by activating EGFR. We also demonstrated that glucose, an important mitogen of the β cells, requires the activation of this HB-EGF-EGFR signaling pathway, ex vivo and in vivo in an infused rat model, to stimulate β-cell replication. Mechanistically, we demonstrate that glucose promotes HB-EGF gene expression via the ChREBP transcription factor and EGFR activation via a protein from the Src kinase family. Since adult human β cells tend to be refractory to proliferation, it is essential to confirm the findings obtained in rodents in human tissues. In isolated human islets, we confirmed the mitogenic action of HB-EGF but we were unable to detect a consistent stimulation of human β-cell proliferation in response to glucose. Our second study therefore consisted in identifying the most appropriate technique to measure human β-cell proliferation. We systematically compared proliferation levels measured by flow cytometry or immunohistochemistry in intact and dispersed human islets. We tested three mitogenic factors: glucose, HB-EGF and harmine. We observed that HB-EGF and harmine stimulate non-β cells and β-cell proliferation regardless of the method used. In contrast, the mitogenic action of glucose is variable depending on the method used. In conclusion, we first demonstrated that the mitogenic effect of glucose in β cells requires the activation of the HB-EGF-EGFR signaling pathway. Then we demonstrated that assessment of human β cell proliferation by flow cytometry offers several advantages over the use of immunohistochemical methods.
316

Automatizované monitorování chování jako nové paradigma ve výzkumu depresivní choroby / Automated monitoring of behaviour as a new paradigm in the research of depressive disorder

Revayová, Anna January 2016 (has links)
The rapid antidepressant effect of ketamine changed the direction of the research of potential antidepressants and its effect was also evaluated in this thesis. However, the main focus of this thesis is a new methodological approach to the research of depressive disorder. The main interest lies with the evaluation of automated monitoring of behaviour in this research. The first aim of this thesis was to evaluate the antidepressant effect of ketamine in the forced swimming test using software enabling automated monitoring of behaviour. The second aim was to meassure the change in phosphorylated Mammalian target of rapamycin (mTOR), using Enzyme-Linked ImmunoSorbent Assay (ELISA). The last, but the most important aim of this thesis was to implement the utilization of Phenotyper boxes in the automated behavioural evaluation of the olfactory bulbectomy model of depressive disorder and also evaluate the effect of ketamine in this model. Ketamine did not show an antidepressant effect in forced swimming test, however this observation could be influenced by chosen dose and mouse strain. Sensitivity of the test to chosen experimental protocol shows insufficient validity of this test. Observed change in level of phosphorylated mTOR corresponded with the behavioural results. Data collected from Phenotyper...
317

Genetic analysis of cell size homeostasis in human cells

Costa, Marcela 05 1900 (has links)
Les cellules sont la plus petite forme de vie individuelle qui forme un organisme. La structure et la santé de tous les organismes est essentiellement définie par le nombre, le type et la taille de leurs cellules. Composé d'environ 30 trillions de cellules, l'homme possède des cellules aux fonctions et aux tailles remarquablement variées, allant d'un neurone pouvant atteindre un mètre à une cellule lymphoïde d'environ 16 µm de diamètre. Il est connu que la taille est fondamentalement l'équilibre entre la croissance cellulaire et la division cellulaire. Néanmoins, les questions sur les réseaux moléculaires qui contrôlent et déterminent le maintien de la taille optimale des cellules restent à déchiffrer. D'innombrables travaux ont caractérisé mTORC1 comme une voie régulatrice majeure de la croissance cellulaire jouant un rôle central, intégrant des stimuli intra et extracellulaires. Ce travail porte sur l'investigation et la caractérisation des acteurs moléculaires et des processus qui orchestrent la taille des cellules humaine déterminées par l'épistase chimique. J'ai entrepris une bibliothèque CRISPR / Cas9 à inactivation prolongée (EKO) dans NALM-6 (lignée cellulaire de lymphome pré-B), suivie d'un fractionnement de la taille des cellules par élutriation à contre-courant en présence de rapamycine (inhibiteur de mTOR), et comparé aux données non publiées données du laboratoire utilisant les mêmes méthodes sans rapamycine. Cette analyse de l'étude indique que dans le contexte amont de mTOR, la perte de gènes liés à la détection des nutriments entraîne une perte de taille en présence d'inhibition de mTOR. En outre, plusieurs knockouts géniques dans la biogenèse des ribosomes et l'homéostasie du calcium ont conduit à une perte ou un gain de taille, montrant un rôle pivot possible de ces processus dans le contrôle de la taille des cellules d'une manière dépendante de mTOR. Ce travail a fourni des informations sur les gènes et réseaux connus et inconnus qui peuvent réguler la taille des cellules d'une manière dépendante de mTOR. Ces résultats doivent être validés et approfondis. / All organisms are essentially structured and fitness defined by cell number, type and size. Composed of around 30 trillion cells, humans have cells with remarkably varied functions and size, ranging from a neuron that can reach one meter in length to a lymphoid cell that is around 16 μm in diameter. At a fundamental level, size is determined by the balance between cell growth and cell division. The molecular networks that control and maintain optimal cell size are yet to be deciphered. The mTORC1 pathway is a major regulator of cell growth that plays a central role in integrating intra- and extra-cellular stimuli. This study addresses the investigation and characterization of the molecular players and processes that orchestrate cell size in human cells, as determined by chemical-genetic size screens and epistasis analysis. I undertook a CRISPR/Cas9 extended-knockout (EKO) genome-wide library screen in the NALM-6 pre-B lymphoma cell line, followed by cell size fractionation by counter flow elutriation in the presence of the mTOR inhibitor rapamycin, and compared the screen data to a similar screen performed in the absence of rapamycin. The analysis indicates that upstream of mTOR, the loss of genes that are related to nutrient sensing, results in size changes in the presence of mTOR inhibition. Also, several gene knockouts in ribosome biogenesis and calcium homeostasis led to size alterations, suggesting a possible a pivotal role of these processes in cell size control in a mTOR-dependent fashion. This study provides insights into the genetic networks that regulate cell size in a mTOR-dependent fashion and establishes new hypotheses for future experimental tests.
318

The role of insulin in retinal ganglion cell dendrite and synapse regeneration after optic nerve injury : molecular mechanisms and potential therapeutic targets

Agostinone, Jessica 12 1900 (has links)
Le glaucome, comme beaucoup d’autres maladies neurodégénératives, entraîne la mort des neurones et reste à ce jour incurable, représentant de ce fait un véritable fardeau pour la société. Il y a donc un réel besoin de développer de nouvelles stratégies thérapeutiques afin de ralentir la progression, voire de guérir les maladies neurologiques. Depuis des décennies, les chercheurs qui étudient les blessures ainsi que les maladies qui affectent le système nerveux central (SNC) ont focalisé leur attention sur la compréhension des mécanismes impliqués dans la dégénérescence axonale afin d’identifier de nouvelles cibles thérapeutiques pour la protection et la régénération des axones. Mais des données récentes indiquent que des déficits dendritiques constituent une caractéristique précoce de la neurodégénérescence, un phénomène maintenant appelé la pathologie dendritique et qui jouerait un rôle prépondérant dans la pathogénèse des maladies neurodégénératives comme le glaucome. Parce que les dendrites représentent des structures essentielles pour la communication et la fonction neuronale, il est donc crucial de protéger et de restaurer non seulement les axones mais aussi les dendrites des neurones encore vivants afin d’améliorer la condition des patients. Malgré cela, la capacité des neurones à régénérer leurs arbres dendritiques reste encore largement inconnue. L’hypothèse centrale de cette thèse propose que : 1) les neurones du SNC peuvent faire repousser leurs dendrites après une blessure axonale, et 2) l’identification des voies de signalisation impliquées pourrait offrir de nouvelles possibilités thérapeutiques permettant de ralentir, voire de prévenir la dégénérescence des neurones rétiniens lors de pathologies oculaires telles que le glaucome. Dans la première partie de cette thèse, nous avons démontré que les neurones des mammifères sont pourvus d’une capacité à restaurer leur arbre dendritique et leurs connectivités synaptiques. Grâce à l’utilisation de souris transgénique soumis à une transsection du nerf optique (axotomie), nous avons montrés que les cellules ganglionnaires de la rétine (CGRs) subissent rapidement un rétrécissement dendritique, bien avant que les dommages axonaux ou la perte des soma ne soient visibles. Nous avons également démontré que l’administration quotidienne d’insuline, par voie topique (gouttes oculaires) ou systémique (injection intrapéritonéale) après la rétraction des dendrites mais avant la mort neuronale induit une régénération robuste des dendrites ainsi qu’une restauration des connections avec les cibles présynaptiques. De plus, cette régénération des arbres dendritiques suite au traitement d’insuline permet d’étendre la survie neuronale et de restaurer la réponse rétinienne à la lumière. Des expériences de perte de fonction ciblée via l’utilisation de petits ARN interférents ont révélé que la régénération induite par l’insuline requiert l’activité des deux complexes de la voie mTOR, mTORC1 et mTORC2. Ces derniers agissent de manière synergique, mTORC1 régulant l’apparition de nouvelles branches dendritiques pour restaurer la complexité des arbres alors que mTORC2 stimule l’élongation des dendrites. Dans la deuxième étude présentée dans cette thèse, nous avons montré pour la première fois que morgana, une protéine chaperonne en aval de mTORC2, est exprimée par les CGRs et que son expression est sévèrement inhibée rapidement après une blessure axonale. Nous avons également démontré que morgana est nécessaire au succès de la régénération ainsi que de la neuroprotection induite par le traitement d’insuline. De plus, nous avons montré que le rétablissement de l’expression de morgana spécifiquement dans les CGRs via l’utilisation d’un vecteur viral (AAV) mène à une régénération robuste non seulement de leurs dendrites mais aussi de leurs synapses. Ainsi, nous avons identifié un nouveau rôle pour la protéine morgana dans la régulation de la morphologie des arbres dendritiques des neurones adultes chez les mammifères. En conclusions, les résultats présentés dans cette thèse contribuent à une meilleure compréhension des mécanismes pathologiques impliqués dans la pathologie dendritique des CGRs et identifient des cibles prometteuses pour le développement de nouvelles stratégies thérapeutiques dans le cadre des maladies neurodégénératives telles que le glaucome. / Glaucoma, just as many other neurodegenerative diseases, triggers neuronal death and remained incurable, hence representing a heavy burden for the society. Therefore, there is a critical need for developing new therapeutic strategies to delay the progression of and, ultimately, cure neurological conditions. For decades, neuroscientists studying injuries and diseases of the CNS have largely focused on understanding the mechanisms of axon degeneration to identify new targets for axonal protection and regeneration. But recent data indicates that dendritic deficits represent an early feature of neurodegeneration, a phenomenon now called dendritic pathology and playing a key role in the pathogenesis of neurodegenerative diseases including glaucoma. Because dendrites are essential structures for neuronal communication and function, it is therefore crucial to protect or restore connectivity as well as axons of surviving neurons to improve patients’ condition. In spite of this, the ability of injured neurons to regenerate dendrites remains largely ignored. The central hypothesis of the thesis is that: i) adult CNS neurons can regrow their dendrites after axonal injury, and ii) the identification of underlying signalling pathways would offer new therapeutic avenues to slow or prevent retinal ganglion cell death during ocular neuropathies such as glaucoma. In the first part of my thesis, I demonstrated that mammalian neurons are endowed with the ability to restore their dendritic arbor and synaptic connectivity. Using adult transgenic mice subjected to optic nerve axotomy, we have shown that retinal ganglion cells (RGCs) rapidly undergo dendritic shrinkage before cell death or axonal damage become visible. We also demonstrated that daily insulin, administered topically (eye drops) or systemically (intraperitoneal) after dendritic arbour shrinkage and prior to neuronal loss results in a robust regeneration of dendrites and successful reconnection with presynaptic targets. Moreover, insulin-mediated restoration of dendritic arbors extended neuronal survival and rescued lighttriggered retinal responses. Targeted loss-of-function experiments using siRNAs revealed that insulin-dependent regeneration requires both the activity of both mTOR complexes, mTORC1 and mTORC2 which act synergistically, mTORC1 promoting new dendritic branching to restore arbor complexity, while mTORC2 drives dendritic process elongation. In the second study presented in my thesis, we showed for the first time that morgana, a chaperone protein downstream of mTORC2, is expressed by RGCs and severely downregulated soon after axonal injury. We also demonstrate that morgana is required for successful insulinmediated regeneration of RGC dendrites and neuroprotection. Morgana specific knockdown using siRNA designed against morgana resulted in substantial alterations of dendrite elongation, without changes in arbor complexity. Further, we showed that AAV-mediated rescue of morgana expression selectively in RGCs promoted striking regeneration of dendrites and synapses. Hence, our findings identified a new role for morgana in the regulation of dendritic arbor morphology in adult mammalian neurons Collectively, the findings presented in this thesis contribute to a better understanding of the pathological mechanisms underlying RGC dendritic pathology and identified promising targets for the development of novel neuroprotective treatments for neurodegenerative diseases such as glaucoma.
319

Novel roles of sterol regulatory element-binding protein-1 in liver

Jideonwo, Victoria N. 26 April 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Sterol Regulatory Element Binding Protein-1 (SREBP-1) is a conserved transcription factor of the basic helix-loop-helix leucine zipper family (bHLH-Zip) that primarily regulates glycolytic and lipogenic enzymes such as L-pyruvate kinase, acetyl-CoA carboxylase, fatty acid synthase, stearoyl-CoA desaturase 1, and mitochondrial glycerol-3-phosphate acyltransferase 1. SREBP-1c activity is higher in the liver of human obese patients, as well as ob/ob and db/db mouse models of obesity and type 2 diabetes, underscoring the role of this transcription factor as a contributor to hepatic steatosis and insulin resistance. Nonetheless, SREBP-1 deficient ob/ob mice, do not display improved glycemia despite a significant decrease in hepatic lipid accumulation, suggesting that SREBP-1 might play a role at regulating carbohydrate metabolism. By silencing SREBP-1 in the liver of normal and type 2 diabetes db/db mice, we showed that indeed, SREBP-1 is needed for appropriate regulation of glycogen synthesis and gluconeogenesis enzyme gene expression. Depleting SREBP-1 activity more than 90%, resulted in a significant loss of glycogen deposition and increased expression of Pck1 and G6pc. Hence, the benefits of reducing de novo lipogenesis in db/db mice were offset by the negative impact on gluconeogenesis and glycogen synthesis. Some studies had also indicated that SREBP-1 regulates the insulin signaling pathway, through regulation of IRS2 and a subunit of the PI3K complex, p55g. To gain insight on the consequences of silencing SREBP-1 on insulin sensitivity, we analyzed the insulin signaling and mTOR pathways, as both are interconnected through feedback mechanisms. These studies suggest that SREBP-1 regulates S6K1, a downstream effector of mTORC1, and a key molecule to activate the synthesis of protein. Furthermore, these analyses revealed that depletion of SREBP-1 leads to reduced insulin sensitivity. Overall, our data indicates that SREBP-1 regulates pathways important for the fed state, including lipogenesis, glycogen and protein synthesis, while inhibiting gluconeogenesis. Therefore, SREBP-1 coordinates multiple aspects of the anabolic response in response to nutrient abundance. These results are in agreement with emerging studies showing that SREBP-1 regulates a complex network of genes to coordinate metabolic responses needed for cell survival and growth, including fatty acid metabolism; phagocytosis and membrane biosynthesis; insulin signaling; and cell proliferation.
320

PAS Kinase and TOR, Controllers of Cell Growth and Proliferation

Cozzens, Brooke Jasmyn 01 March 2019 (has links)
Nutrient sensing kinases lie at the heart of cellular health and homeostasis, allowing cells to quickly adapt to changing environments. Target of Rapamycin (TOR) and PAS kinase (PASK, or PASKIN) are two such nutrient kinases, conserved from yeast to man. In yeast, these kinases each have paralogs. The two TOR paralogs in yeast mimic the mammalian TORC1 and TORC2 complexes, except both Tor1 and Tor2 may contribute to TORC1 or TORC2 function. The two PAS kinase paralogs are paired with the TOR paralogs, meaning that both Psk1 and Psk2 regulate TORC1, while Psk2 suppresses a temperature-sensitive allele of Tor2. Herein we review the evolutionary models for these paralogs, their function in yeast and mammalian cells, as well as the overlapping function of PAS kinase and TOR. We also use Rice University’s Direct Coupling Analysis algorithms to analyze co-evolutionary relationships and identify potential interaction sites between PAS kinase and several of its substrates.

Page generated in 0.0566 seconds