51 |
Modèles et algorithmes pour systèmes multi-robots hétérogènes : application à la patrouille et au suivi de cible / Models and algorithms for heterogeneous multi-robot systems : applied to patrolling and target trackingRobin, Cyril 04 June 2015 (has links)
La détection et le suivi de cibles sont des missions fréquentes pour la robotique mobile, que le contexte soit civil, industriel ou militaire. Ces applications constituent un domaine de choix pour la planification multirobot, et sont abordées par de multiples communautés selon différents points de vue. Nous proposons dans un premier temps une taxonomie commune qui permetde regrouper et de comparer les différentes approches de ces problèmes, afin de mieux les analyser et de mettre en évidence leurs lacunes respectives. En particulier, on note la faible représentativité des modèles exploités, peu expressifs : la plupart des algorithmes évoluent dans un monde en deux dimensions où les observations et le déplacement sont conditionnés par lesmêmes obstacles. Ces modèles éloignés de la réalité nous semblent trop restrictifs pour pleinement exploiter la synergie des équipes multirobot hétérogènes : nous proposons une organisation des différents modèles nécessaires, en explicitant une séparation claire entre modèles et algorithmes de planification. Cette organisation est concrétisée par une librairie qui structure lesmodèles disponibles et définit les requêtes nécessaires aux algorithmes de planification. Dans un second temps, nous proposons un ensemble d’algorithmes utilisant les modèles définis précédemment pour planifier des missions de patrouille de zones et de poursuite de cibles. Ces algorithmes s’appuient sur un formalisme mathématique rigoureux afin d’étudier l’impact des modèlessur les performances. Nous analysons notamment l’impact sur la complexité – c’est-à-dire en quoi des modèles plus élaborés impactent la complexité de résolution – et sur la qualité des solutions résultantes, indépendamment des modèles, selon des métriques usuelles. D’une manière plus générale, les modèles sont un lien essentiel entre l’Intelligence Artificielle et la Robotique : leur enrichissement et leur étude approfondie permettent d’exhiber des comportements plus efficaces pour la réussite des missions allouées aux robots. Cette thèse contribue à démontrer l’importance des modèles pour la planification et la conduite de mission multirobots. / Detecting, localizing or following targets is at the core of numerous robotic applications in industrial, civilian and military application contexts. Much work has been devoted in various research communities to planning for such problems, each community with a different standpoint. Our thesis first provides a unifying taxonomy to go beyond the frontiers of specific communities and specific problems, and to enlarge the scope of prior surveys. We review various work related to each class of problems identified in the taxonomy, highlighting the different approaches, models and results. This analysis specifically points out the lack of representativityof the exploited models, which are in vast majority only 2D single-layer models where motion and sensing are mixed up. We consider those unrealistic models as too restrictive to handle the full synergistic potential of an heterogeneous team of cooperative robots. In response to this statement, we suggest a new organisation of the necessary models, stating clearly the links and separation between models and planning algorithms. This has lead to the development of a C++ library that structures the available models and defines the requests required by the planning process. We then exploit this library through a set of algorithms tackling area patrolling and target tracking. These algorithms are supported by a sound formalism and we study the impact of the models on the observed performances, with an emphasis on the complexity and the quality of the resultingsolutions. As a more general consideration, models are an essential link between Artificial Intelligence and applied Robotics : improving their expressiveness and studying them rigorously are the keys leading toward better robot behaviours and successful robotic missions. This thesis help to show how important the models are for planning and other decision processes formulti-robot missions.
|
52 |
Real-Time Multi-Robot Motion Planning using Decomposed Sampling-Based Methods / Rörelseplanering i realtid för flera robotar med hjälp av metoder dekomponerad samplingbaseradeSolano, Andrey January 2024 (has links)
This project proposes an adaptation of the dRRT* algorithm, a samplingbased multi-robot planner, for real-time industrial automation scenarios. The main objectives include optimizing computationally expensive sections of the algorithm, solving partially specified multi-robot problems, and evaluating the performance of the resulting method in various industry-like scenarios. The proposed algorithm, called Fast-dRRT*, aims to achieve highquality collision-free paths within strict time constraints. To accomplish this, the project introduces modifications to the dRRT* algorithm, such as the utilization of pre-computed swept volumes for efficient collision detection. The performance of four multi-robot planners, namely dRRT, ao-dRRT, dRRT*, and Fast-dRRT*, is evaluated through experiments on toy scenarios and industrial use cases. The results show that the proposed Fast-dRRT* algorithm outperforms the other planners in terms of finding solutions within the given time limits. It demonstrates improved efficiency, speed, and resilience to increased search spaces and the number of robots. The algorithm’s performance is further evaluated in real-world scenarios, including automotive assembly lines and warehouse automation, where it consistently outperforms dRRT* in terms of search speed and total planning time. Additionally, the algorithm successfully handles partially specified multi-robot problems, optimizing the overall movements’ cost. The study concludes that Fast-dRRT* is a promising option for real-time planning in industrial automation, offering reduced computation time and feasible solutions to complex multi-robot motion planning problems. / Detta projekt föreslår en anpassning av dRRT*-algoritmen, en samplingsbaserad multirobotplanerare, för realtidsscenarier inom industriell automation.. De huvudsakliga målen inkluderar optimering av beräkningskrävande delar av algoritmen, lösning av delvis specificerade multirobotproblem och utvärdering av den resulterande metodens prestanda i olika industriliknande scenarier. Den föreslagna algoritmen, kallad Fast-dRRT*, syftar till att uppnå högkvalitativa kollisionsfria banor inom strikta tidsbegränsningar. För att uppnå detta introducerar projektet modifieringar av dRRT*-algoritmen, såsom användning av förberäknade svepta volymer för effektiv kollisionsdetektering. Prestandan hos fyra multirobotplanerare, nämligen dRRT, ao-dRRT, dRRT* och Fast-dRRT*, utvärderas genom experiment på leksaksscenarier och industriella användningsfall. Resultaten visar att den föreslagna Fast-dRRT*- algoritmen överträffar de andra planerarna när det gäller att hitta lösningar inom de givna tidsgränserna. Den visar förbättrad effektivitet, hastighet och motståndskraft mot ökade sökutrymmen och antalet robotar. Algoritmens prestanda utvärderas vidare i verkliga scenarier, inklusive monteringslinjer för bilar och lagerautomation, där den konsekvent överträffar dRRT* när det gäller sökhastighet och total planeringstid. Dessutom hanterar algoritmen framgångsrikt delvis specificerade multirobotproblem och optimerar den totala rörelsekostnaden. Studien drar slutsatsen att Fast-dRRT* är ett lovande alternativ för realtidsplanering inom industriell automation, eftersom den erbjuder kortare beräkningstid och genomförbara lösningar på komplexa problem med rörelseplanering för multirobotar.
|
53 |
Predictive Controllers for Load Transportation in Microgravity EnvironmentsPhodapol, Sujet January 2023 (has links)
Space activities have been increasing dramatically in the past decades. As a result, the number of space debris has also increased significantly. Therefore, it is necessary to clean up and remove them to prevent a collision between space debris and spacecraft. In this thesis, we focus on load transportation using tethers, which connect multiple robots and loads together with lightweight cables. We propose a generalized framework to model and calculate the interaction force for the tethered multi-robot system. Then, we develop centralized and decentralized non-linear Model Predictive Control (MPC) controllers to complete a transportation task. Two simulators, a numerical and physical simulator, are presented and used to evaluate the performance of the controllers. The numerical simulator is used to verify the proposed model and evaluate the controllers for the ideal case. The physical simulator is then used to validate the performance of both centralized and decentralized controllers in real-time settings. Finally, we demonstrate how the proposed controllers perform in two and three-dimensional experiments. / Rymdaktiviteter har ökat dramatiskt under de senaste årtiondena. Som en följd av detta har mängden rymdskräp också ökat avsevärt. Därför är det nödvändigt att rensa upp och avlägsna detta skräp för att förhindra kollisioner mellan rymdskräp och rymdfarkoster. I denna rapport fokuserar vi på transporter av rymdobjekt som är sammanbundna via en lätt kabel. Vi föreslår en allmän metod för att modellera och beräkna interaktionskraften för det förenade multirobotsystemet. Sedan utvecklar vi centraliserad och decentraliserad icke-linjär modell-prediktiv reglering, MPC (eng. Model Predictive Control), för att uppnå transportuppgiften. Två simulatorer, en numerisk och en fysisk simulator, presenteras och används för att utvärdera styrsystemets prestanda. Den numeriska simuleringen används för att verifiera den föreslagna modellen och utforma styrsystemet för det idealiska fallet. Den fysiska simuleringen används sedan för att validera prestandan för både det centraliserade och decentraliserade styrsystem i realtid. Slutligen demonstrerar vi hur de föreslagna styrsystemen utför sig i tre- respektive två-dimensionella experiment.
|
54 |
Estrat?gias baseadas em aprendizado para coordena??o de uma frota de rob?s em tarefas cooperativasAranibar, Dennis Barrios 14 October 2005 (has links)
Made available in DSpace on 2014-12-17T14:56:04Z (GMT). No. of bitstreams: 1
DennisBA.pdf: 1210954 bytes, checksum: f42a19fb396d47e801ab673ab1f88887 (MD5)
Previous issue date: 2005-10-14 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / In multi-robot systems, both control architecture and work strategy represent a challenge for researchers. It is important to have a robust architecture that can be easily adapted to requirement changes. It is also important that work strategy allows robots to complete tasks efficiently, considering that robots interact directly in environments with humans. In this context, this work explores two approaches for robot soccer team coordination for cooperative tasks development. Both approaches are based on a combination of imitation learning and reinforcement learning. Thus, in the first approach was developed a control architecture, a fuzzy inference engine for recognizing situations in robot soccer games, a software for narration of robot soccer games based on the inference engine and the implementation of learning by imitation from observation and analysis of others robotic teams. Moreover, state abstraction was efficiently implemented in reinforcement learning applied to the robot soccer standard problem. Finally, reinforcement learning was implemented in a form where actions are explored only in some states (for example, states where an specialist robot system used them) differently to the traditional form, where actions have to be tested in all states. In the second approach reinforcement learning was implemented with function approximation, for which an algorithm called RBF-Sarsa($lambda$) was created. In both approaches batch reinforcement learning algorithms were implemented and imitation learning was used as a seed for reinforcement learning. Moreover, learning from robotic teams controlled by humans was explored. The proposal in this work had revealed efficient in the robot soccer standard problem and, when implemented in other robotics systems, they will allow that these robotics systems can efficiently and effectively develop assigned tasks. These approaches will give high adaptation capabilities to requirements and environment changes. / Em sistemas multi-rob?s a arquitetura de controle e a estrat?gia de trabalho representam um desafio para os pesquisadores. ? importante que a arquitetura de controle seja robusta, de forma que se adapte naturalmente ?s mudan?as nas caracter?sticas do problema e tamb?m que a estrat?gia de trabalho permita aos rob?s desenvolver as tarefas atribu?das eficaz e eficientemente, levando em considera??o a restri??o de que os rob?s v?o interagir diretamente em ambientes povoados de seres humanos. Neste contexto, este trabalho explora duas abordagens para a coordena??o de uma frota de rob?s desenvolvendo tarefas cooperativas. Ambas as abordagens s?o baseadas em uma mistura de aprendizado por imita??o e por experi?ncia. Assim, na primeira abordagem desenvolveu-se uma arquitetura de controle, uma m?quina de infer?ncia difusa para reconhecimento de fatos em jogos de futebol, um software narrador de jogos baseado na m?quina de infer?ncia difusa, e a implementa??o de aprendizado por imita??o a partir de observa??o e an?lise de outros times rob?ticos. Al?m disso, aplicou-se eficientemente abstra??o de estados em aprendizado por refor?o no problema padr?o de futebol de rob?s. Finalmente, o aprendizado por refor?o foi implementado de forma que as a??es somente s?o executadas em certos estados (por exemplo os estados onde algum sistema rob?tico especialista j? as utilizou) diferentemente da forma tradicional onde as a??es no banco de conhecimento t?m que ser testadas em todos os estados. No caso da segunda abordagem, implementou-se aprendizado por refor?o com aproxima??o de fun??es, para o que foi criado um algoritmo chamado RBF-Sarsa($lambda$). Em ambas as abordagens implementou-se o aprendizado por refor?o em lotes e o aprendizado por imita??o como semente para aprendizado por refor?o. Al?m disso, explorou-se o aprendizado com times de rob?s controlados por seres humanos. As propostas deste trabalho mostraram-se eficientes no problema padr?o de futebol de rob?s, e ao serem implementadas em outros sistemas rob?ticos permitir?o que os mesmos sejam eficazes e eficientes no desenvolvimento das tarefas atribu?das com um alto grau de adapta??o ?s mudan?as dos requerimentos e do ambiente.
|
55 |
Multi-robot System in Coverage Control: Deployment, Coverage, and RendezvousShaocheng Luo (8795588) 04 May 2020 (has links)
<div>Multi-robot systems have demonstrated strong capability in handling environmental operations. In this study, We examine how a team of robots can be utilized in covering and removing spill patches in a dynamic environment by executing three consecutive stages: deployment, coverage, and rendezvous. </div><div> </div><div>For the deployment problem, we aim for robot allocation based on the discreteness of the patches that need to be covered. With the deep neural network (DNN) based spill detector and remote sensing facilities such as drones with vision sensors and satellites, we are able to obtain the spill distribution in the workspace. Then, we formulate the allocation problem in a general optimization form and provide solutions using an integer linear programming (ILP) solver under several realistic constraints. After the allocation process is completed and the robot team is divided according to the number of spills, we deploy robots to their computed optimal goal positions. In the robot deployment part, control laws based on artificial potential field (APF) method are proposed and practiced on robots with a common unicycle model. </div><div> </div><div>For the coverage control problem, we show two strategies that are tailored for a wirelessly networked robot team. We propose strategies for coverage with and without path planning, depending on the availability of global information. Specifically, in terms of coverage with path planning, we partition the workspace from the aerial image into pieces and let each robot take care of one of the pieces. However, path-planning-based coverage relies on GPS signals or other external positioning systems, which are not applicable for indoor or GPS-denied circumstances. Therefore, we propose an asymptotic boundary shrink control that enables a collective coverage operation with the robot team. Such a strategy does not require a planned path, and because of its distributedness, it shows many advantages, including system scalability, dynamic spill adaptability, and collision avoidance. In case of a large-scale patch that poses challenges to robot connectivity maintenance during the operation, we propose a pivot-robot coverage strategy by mean of an a priori geometric tessellation (GT). In the pivot-robot-based coverage strategy, a team of robots is sent to perform complete coverage to every packing area of GT in sequence. Ultimately, the entire spill in the workspace can be covered and removed.</div><div> </div><div>For the rendezvous problem, we investigate the use of graph theory and propose control strategies based on network topology to motivate robots to meet at a designated or the optimal location. The rendezvous control strategies show a strong robustness to some common failures, such as mobility failure and communication failure. To expedite the rendezvous process and enable herding control in a distributed way, we propose a multi-robot multi-point rendezvous control strategy. </div><div> </div><div>To verify the validity of the proposed strategies, we carry out simulations in the Robotarium MATLAB platform, which is an open source swarm robotics experiment testbed, and conduct real experiments involving multiple mobile robots.</div>
|
56 |
Control barrier function-enabled human-in-the-loop control for multi-robot systems : Centralized and distributed approaches / Kontrollbarriärfunktion som möjliggör mänsklig kontroll i kretsloppet för flerrobotsystem : Centraliserade och distribuerade tillvägagångssättNan Fernandez-Ayala, Victor January 2022 (has links)
Autonomous multi-robot systems have found many real-world applications in factory settings, rescue tasks and light shows. Albeit these successful applications, the multi-robot system is usually pre-programmed with limited flexibility for online adaptation. Having a human-in-the-loop feature would provide additional flexibility such as handling unexpected situations, detecting and correcting bad behaviours and supporting the automated decision making. In addition, it would also allow for an extra level of cooperation between the robots and the human that facilitates certain real-world tasks, for example in the agricultural sector. Control barrier functions (CBFs), as a convenient modular-design tool, will be mainly explored. CBFs have seen a lot of development in recent years and extending them to the field of multi-robot systems is still new. In particular, creating an original distributed approach, instead of a centralized one, will be one of the key topics of this Master’s thesis project. In this thesis work, several multi-robot coordination protocols and safety constraints will be identified and these constraints will be enforced using a control barrier function-enabled mixer module. This module will take in the commands from both the planner and the human operator, prioritizing the commands from the human operator as long as the safety constraints are not violated. Otherwise, the mixer module will filter the commands and send out a safe alternative. The underlying multi-robot tasks are expected to be achieved whenever feasible. Simulations in ROS, Python and MATLAB environments are developed to experimentally assess the safety and optimality of the system, and experiments with real robots in a lab are performed to show the applicability of this algorithm. Finally, a distributed approach to the mixer module has been developed, based on previous research and extended to allow for more versatility. This is of key importance since it would allow each robot to compute its own controller based on local information, making the multi-robot system both more robust and flexible to be deployed on real-world applications. / Autonoma multirobotsystem har fått många verkliga tillämpningar i fabriksmiljöer, räddningsuppdrag och ljusshower. Trots dessa framgångsrika tillämpningar är multirobotsystemet vanligtvis förprogrammerat med begränsad flexibilitet för anpassning online. En människa i loopen skulle ge ytterligare flexibilitet, t.ex. när det gäller att hantera oväntade situationer, upptäcka och korrigera dåliga beteenden och stödja det automatiska beslutsfattandet. Dessutom skulle det också möjliggöra en extra samarbetsnivå mellan robotarna och människan som underlättar vissa verkliga uppgifter, till exempel inom jordbrukssektorn. Kontrollbarriärfunktioner (CBF), som ett bekvämt verktyg för modulbaserad utformning, kommer huvudsakligen att undersökas. CBF:er har utvecklats mycket under de senaste åren och det är fortfarande nytt att utvidga dem till flerrobotsystem. Att skapa ett originellt distribuerat tillvägagångssätt i stället för ett centraliserat kommer att vara ett av de viktigaste ämnena i detta examensarbete. I detta examensarbete kommer flera samordningsprotokoll och säkerhetsbegränsningar för flera robotar att identifieras och dessa begränsningar kommer att upprätthållas med hjälp av en mixermodul med kontrollbarriärfunktion. Denna modul kommer att ta emot kommandon från både planeraren och den mänskliga operatören och prioritera kommandon från den mänskliga operatören så länge säkerhetsbegränsningarna inte överträds. I annat fall kommer mixermodulen att filtrera kommandona och skicka ut ett säkert alternativ. De underliggande multirobotuppgifterna förväntas uppnås närhelst det är möjligt. Simuleringar i ROS-, Python- och MATLAB-miljöerna utvecklas för att experimentellt bedöma systemets säkerhet och optimalitet, och experiment med riktiga robotar i ett labb utförs för att visa algoritmens tillämpbarhet. Slutligen har ett distribuerat tillvägagångssätt för mixermodulen utvecklats, baserat på tidigare forskning och utökat för att möjliggöra större mångsidighet. Detta är av central betydelse eftersom det skulle göra det möjligt för varje robot att beräkna sin egen styrning utifrån lokal information, vilket gör systemet med flera robotar både mer robust och flexibelt för att kunna användas i verkliga tillämpningar.
|
57 |
Commande distribuée, en poursuite, d'un système multi-robots non holonomes en formation / Distributed tracking control of nonholonomic multi-robot formation systemsChu, Xing 13 December 2017 (has links)
L’objectif principal de cette thèse est d’étudier le problème du contrôle de suivi distribué pour les systèmes de formation de multi-robots à contrainte non holonomique. Ce contrôle vise à entrainer une équipe de robots mobile de type monocycle pour former une configuration de formation désirée avec son centroïde se déplaçant avec une autre trajectoire de référence dynamique et pouvant être spécifié par le leader virtuel ou humain. Le problème du contrôle de suivi a été résolu au cours de cette thèse en développant divers contrôleurs distribués pratiques avec la considération d’un taux de convergence plus rapide, une précision de contrôle plus élevée, une robustesse plus forte, une estimation du temps de convergence explicite et indépendante et moins de coût de communication et de consommation d’énergie. Dans la première partie de la thèse nous étudions d’abord au niveau du chapitre 2 la stabilité à temps fini pour les systèmes de formation de multi-robots. Une nouvelle classe de contrôleur à temps fini est proposée dans le chapitre 3, également appelé contrôleur à temps fixe. Nous étudions les systèmes dynamiques de suivi de formation de multi-robots non holonomiques dans le chapitre 4. Dans la deuxième partie, nous étudions d'abord le mécanisme de communication et de contrôle déclenché par l'événement sur les systèmes de suivi de la formation de multi-robots non-holonomes au chapitre 5. De plus, afin de développer un schéma d'implémentation numérique, nous proposons une autre classe de contrôleurs périodiques déclenchés par un événement basé sur un observateur à temps fixe dans le chapitre 6. / The main aim of this thesis is to study the distributed tracking control problem for the multi-robot formation systems with nonholonomic constraint, of which the control objective it to drive a team of unicycle-type mobile robots to form one desired formation configuration with its centroid moving along with another dynamic reference trajectory, which can be specified by the virtual leader or human. We consider several problems in this point, ranging from finite-time stability andfixed-time stability, event-triggered communication and control mechanism, kinematics and dynamics, continuous-time systems and hybrid systems. The tracking control problem has been solved in this thesis via developing diverse practical distributed controller with the consideration of faster convergence rate, higher control accuracy, stronger robustness, explicit and independent convergence time estimate, less communication cost and energy consumption.In the first part of the thesis, we first study the finite-time stability for the multi-robot formation systems in Chapter 2. To improve the pior results, a novel class of finite-time controller is further proposed in Chapter 3, which is also called fixed-time controller. The dynamics of nonholonomic multi-robot formation systems is considered in Chapter 4. In the second part, we first investigate the event-triggered communication and control mechanism on the nonholonomic multi-robot formation tracking systems in Chapter 5. Moreover, in order to develop a digital implement scheme, we propose another class of periodic event-triggered controller based on fixed-time observer in Chapter 6.
|
Page generated in 0.0616 seconds