• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 9
  • 7
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem gerativa para sumarização automática multidocumento / Generative modeling for multi-document sumarization

Jorge, María Lucía Del Rosario Castro 09 March 2015 (has links)
A Sumarização Multidocumento consiste na produção automática de um único sumário a partir de um conjunto de textos que tratam de um mesmo assunto. Essa tarefa vem se tornando cada vez mais importante, já que auxilia o processamento de grandes volumes de informação, permitindo destacar a informação mais relevante para o usuário. Nesse trabalho, são propostas e exploradas modelagens baseadas em Aprendizado Gerativo, em que a tarefa de Sumarização Multidocumento é esquematizada usando o modelo Noisy- Channel e seus componentes de modelagem de língua, de transformação e decodificação, que são apropriadamente instanciados para a tarefa em questão. Essas modelagens são formuladas com atributos superficiais e profundos. Em particular, foram definidos três modelos de transformação, cujas histórias gerativas capturam padrões de seleção de conteúdo a partir de conjuntos de textos e seus correspondentes sumários multidocumento produzidos por humanos. O primeiro modelo é relativamente mais simples, pois é composto por atributos superficiais tradicionais; o segundo modelo é mais complexo, pois, além de atributos superficiais, adiciona atributos discursivos monodocumento; finalmente, o terceiro modelo é o mais complexo, pois integra atributos superficiais, de natureza discursiva monodocumento e semântico-discursiva multidocumento, pelo uso de informação proveniente das teorias RST e CST, respectivamente. Além desses modelos, também foi desenvolvido um modelo de coerência (ou modelo de língua) para sumários multidocumento, que é projetado para capturar padrões de coerência, tratando alguns dos principais fenômenos multidocumento que a afetam. Esse modelo foi desenvolvido com base no modelo de entidades e com informações discursivas. Cada um desses modelos foi inferido a partir do córpus CSTNews de textos jornalísticos e seus respectivos sumários em português. Finalmente, foi desenvolvido também um decodificador para realizar a construção do sumário a partir das inferências obtidas. O decodificador seleciona o subconjunto de sentenças que maximizam a probabilidade do sumário de acordo com as probabilidades inferidas nos modelos de seleção de conteúdo e o modelo de coerência. Esse decodificador inclui também uma estratégia para evitar que sentenças redundantes sejam incluídas no sumário final. Os sumários produzidos a partir dessa modelagem gerativa são comparados com os sumários produzidos por métodos estatísticos do estado da arte, os quais foram implementados, treinados e testados sobre o córpus. Utilizando-se avaliações de informatividade tradicionais da área, os resultados obtidos mostram que os modelos desenvolvidos neste trabalho são competitivos com os métodos estatísticos do estado da arte e, em alguns casos, os superam. / Multi-document Summarization consists in automatically producing a unique summary from a set of source texts that share a common topic. This task is becoming more important, since it supports large volume data processing, enabling to highlight relevant information to the users. In this work, generative modeling approaches are proposed and investigated, where the Multidocument Summarization task is modeled through the Noisy-Channel framework and its components: language model, transformation model and decoding, which are properly instantiated for the correspondent task. These models are formulated with shallow and deep features. Particularly, three main transformation models were defined, establishing generative stories that capture content selection patterns from sets of source texts and their corresponding human multi-document summaries. The first model is the less complex, since its features are traditional shallow features; the second model is more complex, incorporating single-document discursive knowledge features (given by RST) to the features proposed in the first model; finally, the third model is the most complex, since it incorporates multi-document discursive knowledge features (given by CST) to the features provided by models 1 and 2. Besides these models, it was also developed a coherence model (represented by the Noisy-Channel´s language model) for multi-document summaries. This model, different from transformation models, aims at capturing coerence patterns in multi-document summaries. This model was developed over the Entity-based Model and incorporates discursive knowledge in order to capture coherence patterns, exploring multi-document phenomena. Each of these models was treined with the CSTNews córpus of journalistic texts and their corresponding summaries. Finally, a decoder to search for the summary that maximizes the probability of the estimated models was developed. The decoder selects the subset of sentences that maximize the estimated probabilities. The decoder also includes an additional functionality for treating redundancy in the decoding process by using discursive information from the CST. The produced summaries are compared with the summaries produced by state of the art generative models, which were also treined and tested with the CSTNews corpus. The evaluation was carried out using traditional informativeness measures, and the results showed that the generative models developed in this work are competitive with the state of the art statistical models, and, in some cases, they outperform them. .
2

Modelagem gerativa para sumarização automática multidocumento / Generative modeling for multi-document sumarization

María Lucía Del Rosario Castro Jorge 09 March 2015 (has links)
A Sumarização Multidocumento consiste na produção automática de um único sumário a partir de um conjunto de textos que tratam de um mesmo assunto. Essa tarefa vem se tornando cada vez mais importante, já que auxilia o processamento de grandes volumes de informação, permitindo destacar a informação mais relevante para o usuário. Nesse trabalho, são propostas e exploradas modelagens baseadas em Aprendizado Gerativo, em que a tarefa de Sumarização Multidocumento é esquematizada usando o modelo Noisy- Channel e seus componentes de modelagem de língua, de transformação e decodificação, que são apropriadamente instanciados para a tarefa em questão. Essas modelagens são formuladas com atributos superficiais e profundos. Em particular, foram definidos três modelos de transformação, cujas histórias gerativas capturam padrões de seleção de conteúdo a partir de conjuntos de textos e seus correspondentes sumários multidocumento produzidos por humanos. O primeiro modelo é relativamente mais simples, pois é composto por atributos superficiais tradicionais; o segundo modelo é mais complexo, pois, além de atributos superficiais, adiciona atributos discursivos monodocumento; finalmente, o terceiro modelo é o mais complexo, pois integra atributos superficiais, de natureza discursiva monodocumento e semântico-discursiva multidocumento, pelo uso de informação proveniente das teorias RST e CST, respectivamente. Além desses modelos, também foi desenvolvido um modelo de coerência (ou modelo de língua) para sumários multidocumento, que é projetado para capturar padrões de coerência, tratando alguns dos principais fenômenos multidocumento que a afetam. Esse modelo foi desenvolvido com base no modelo de entidades e com informações discursivas. Cada um desses modelos foi inferido a partir do córpus CSTNews de textos jornalísticos e seus respectivos sumários em português. Finalmente, foi desenvolvido também um decodificador para realizar a construção do sumário a partir das inferências obtidas. O decodificador seleciona o subconjunto de sentenças que maximizam a probabilidade do sumário de acordo com as probabilidades inferidas nos modelos de seleção de conteúdo e o modelo de coerência. Esse decodificador inclui também uma estratégia para evitar que sentenças redundantes sejam incluídas no sumário final. Os sumários produzidos a partir dessa modelagem gerativa são comparados com os sumários produzidos por métodos estatísticos do estado da arte, os quais foram implementados, treinados e testados sobre o córpus. Utilizando-se avaliações de informatividade tradicionais da área, os resultados obtidos mostram que os modelos desenvolvidos neste trabalho são competitivos com os métodos estatísticos do estado da arte e, em alguns casos, os superam. / Multi-document Summarization consists in automatically producing a unique summary from a set of source texts that share a common topic. This task is becoming more important, since it supports large volume data processing, enabling to highlight relevant information to the users. In this work, generative modeling approaches are proposed and investigated, where the Multidocument Summarization task is modeled through the Noisy-Channel framework and its components: language model, transformation model and decoding, which are properly instantiated for the correspondent task. These models are formulated with shallow and deep features. Particularly, three main transformation models were defined, establishing generative stories that capture content selection patterns from sets of source texts and their corresponding human multi-document summaries. The first model is the less complex, since its features are traditional shallow features; the second model is more complex, incorporating single-document discursive knowledge features (given by RST) to the features proposed in the first model; finally, the third model is the most complex, since it incorporates multi-document discursive knowledge features (given by CST) to the features provided by models 1 and 2. Besides these models, it was also developed a coherence model (represented by the Noisy-Channel´s language model) for multi-document summaries. This model, different from transformation models, aims at capturing coerence patterns in multi-document summaries. This model was developed over the Entity-based Model and incorporates discursive knowledge in order to capture coherence patterns, exploring multi-document phenomena. Each of these models was treined with the CSTNews córpus of journalistic texts and their corresponding summaries. Finally, a decoder to search for the summary that maximizes the probability of the estimated models was developed. The decoder selects the subset of sentences that maximize the estimated probabilities. The decoder also includes an additional functionality for treating redundancy in the decoding process by using discursive information from the CST. The produced summaries are compared with the summaries produced by state of the art generative models, which were also treined and tested with the CSTNews corpus. The evaluation was carried out using traditional informativeness measures, and the results showed that the generative models developed in this work are competitive with the state of the art statistical models, and, in some cases, they outperform them. .
3

M3D: Multimodal MultiDocument Fine-Grained Inconsistency Detection

Tang, Chia-Wei 10 June 2024 (has links)
Validating claims from misinformation is a highly challenging task that involves understanding how each factual assertion within the claim relates to a set of trusted source materials. Existing approaches often make coarse-grained predictions but fail to identify the specific aspects of the claim that are troublesome and the specific evidence relied upon. In this paper, we introduce a method and new benchmark for this challenging task. Our method predicts the fine-grained logical relationship of each aspect of the claim from a set of multimodal documents, which include text, image(s), video(s), and audio(s). We also introduce a new benchmark (M^3DC) of claims requiring multimodal multidocument reasoning, which we construct using a novel claim synthesis technique. Experiments show that our approach significantly outperforms state-of-the-art baselines on this challenging task on two benchmarks while providing finer-grained predictions, explanations, and evidence. / Master of Science / In today's world, we are constantly bombarded with information from various sources, making it difficult to distinguish between what is true and what is false. Validating claims and determining their truthfulness is an essential task that helps us separate facts from fiction, but it can be a time-consuming and challenging process. Current methods often fail to pinpoint the specific parts of a claim that are problematic and the evidence used to support or refute them. In this study, we present a new method and benchmark for fact-checking claims using multiple types of information sources, including text, images, videos, and audio. Our approach analyzes each aspect of a claim and predicts how it logically relates to the available evidence from these diverse sources. This allows us to provide more detailed and accurate assessments of the claim's validity. We also introduce a new benchmark dataset called M^3DC, which consists of claims that require reasoning across multiple sources and types of information. To create this dataset, we developed a novel technique for synthesizing claims that mimic real-world scenarios. Our experiments show that our method significantly outperforms existing state-of-the-art approaches on two benchmarks while providing more fine-grained predictions, explanations, and evidence. This research contributes to the ongoing effort to combat misinformation and fake news by providing a more comprehensive and effective approach to fact-checking claims.
4

Investigação de modelos de coerência local para sumários multidocumento / Investigation of local coherence models for multri-document summaries

Dias, Márcio de Souza 10 May 2016 (has links)
A sumarização multidocumento consiste na tarefa de produzir automaticamente um único sumário a partir de um conjunto de textos derivados de um mesmo assunto. É imprescindível que seja feito o tratamento de fenômenos que ocorrem neste cenário, tais como: (i) a redundância, a complementaridade e a contradição de informações; (ii) a uniformização de estilos de escrita; (iii) tratamento de expressões referenciais; (iv) a manutenção de focos e perspectivas diferentes nos textos; (v) e a ordenação temporal das informações no sumário. O tratamento de tais fenômenos contribui significativamente para que seja produzido ao final um sumário informativo e coerente, características difíceis de serem garantidas ainda que por um humano. Um tipo particular de coerência estudado nesta tese é a coerência local, a qual é definida por meio de relações entre enunciados (unidades menores) em uma sequência de sentenças, de modo a garantir que os relacionamentos contribuirão para a construção do sentido do texto em sua totalidade. Partindo do pressuposto de que o uso de conhecimento discursivo pode melhorar a avaliação da coerência local, o presente trabalho propõe-se a investigar o uso de relações discursivas para elaborar modelos de coerência local, os quais são capazes de distinguir automaticamente sumários coerentes dos incoerentes. Além disso, um estudo sobre os erros que afetam a Qualidade Linguística dos sumários foi realizado com o propósito de verificar quais são os erros que afetam a coerência local dos sumários, se os modelos de coerência podem identificar tais erros e se há alguma relação entre os modelos de coerência e a informatividade dos sumários. Para a realização desta pesquisa foi necessário fazer o uso das informações semântico-discursivas dos modelos CST (Cross-document Structure Theory) e RST (Rhetorical Structure Theory) anotadas no córpus, de ferramentas automáticas, como o parser Palavras e de algoritmos que extraíram informações do córpus. Os resultados mostraram que o uso de informações semântico-discursivas foi bem sucedido na distinção dos sumários coerentes dos incoerentes e que os modelos de coerência implementados nesta tese podem ser usados na identificação de erros da qualidade linguística que afetam a coerência local. / Multi-document summarization is the task of automatically producing a single summary from a collection of texts derived from the same subject. It is essential to treat many phenomena, such as: (i) redundancy, complementarity and contradiction of information; (ii) writing styles standardization; (iii) treatment of referential expressions; (iv) text focus and different perspectives; (v) and temporal ordering of information in the summary. The treatment of these phenomena contributes to the informativeness and coherence of the final summary. A particular type of coherence studied in this thesis is the local coherence, which is defined by the relationship between statements (smallest units) in a sequence of sentences. The local coherence contributes to the construction of textual meaning in its totality. Assuming that the use of discursive knowledge can improve the evaluation of the local coherence, this thesis proposes to investigate the use of discursive relations to develop local coherence models, which are able to automatically distinguish coherent summaries from incoherent ones. In addition, a study on the errors that affect the Linguistic Quality of the summaries was conducted in order to verify what are the errors that affect the local coherence of summaries, as well as if the coherence models can identify such errors, and whether there is any relationship between coherence models and informativenessof summaries. For thisresearch, it wasnecessary theuseof semantic-discursive information of CST models (Cross-document Structure Theory) and RST (Rhetorical Structure Theory) annoted in the corpora, automatic tools, parser as Palavras, and algorithms that extract information from the corpus. The results showed that the use of semantic-discursive information was successful on the distinction between coherent and incoherent summaries, and that the information about coherence can be used in error detection of linguistic quality that affect the local coherence.
5

Investigação de estratégias de sumarização humana multidocumento

Camargo, Renata Tironi de 30 August 2013 (has links)
Made available in DSpace on 2016-06-02T20:25:21Z (GMT). No. of bitstreams: 1 5583.pdf: 2165924 bytes, checksum: 9508776d3397fc5a516393218f88c50f (MD5) Previous issue date: 2013-08-30 / Universidade Federal de Minas Gerais / The multi-document human summarization (MHS), which is the production of a manual summary from a collection of texts from different sources on the same subject, is a little explored linguistic task. Considering the fact that single document summaries comprise information that present recurrent features which are able to reveal summarization strategies, we aimed to investigate multi-document summaries in order to identify MHS strategies. For the identification of MHS strategies, the source texts sentences from the CSTNews corpus (CARDOSO et al., 2011) were manually aligned to their human summaries. The corpus has 50 clusters of news texts and their multi-document summaries in Portuguese. Thus, the alignment revealed the origin of the selected information to compose the summaries. In order to identify whether the selected information show recurrent features, the aligned (and nonaligned) sentences were semi automatically characterized considering a set of linguistic attributes identified in some related works. These attributes translate the content selection strategies from the single document summarization and the clues about MHS. Through the manual analysis of the characterizations of the aligned and non-aligned sentences, we identified that the selected sentences commonly have certain attributes such as sentence location in the text and redundancy. This observation was confirmed by a set of formal rules learned by a Machine Learning (ML) algorithm from the same characterizations. Thus, these rules translate MHS strategies. When the rules were learned and tested in CSTNews by ML, the precision rate was 71.25%. To assess the relevance of the rules, we performed 3 different kinds of intrinsic evaluations: (i) verification of the occurrence of the same strategies in another corpus, and (ii) comparison of the quality of summaries produced by the HMS strategies with the quality of summaries produced by different strategies. Regarding the evaluation (i), which was automatically performed by ML, the rules learned from the CSTNews were tested in a different newspaper corpus and its precision was 70%, which is very close to the precision obtained in the training corpus (CSTNews). Concerning the evaluating (ii), the quality, which was manually evaluated by 10 computational linguists, was considered better than the quality of other summaries. Besides describing features concerning multi-document summaries, this work has the potential to support the multi-document automatic summarization, which may help it to become more linguistically motivated. This task consists of automatically generating multi-document summaries and, therefore, it has been based on the adjustment of strategies identified in single document summarization or only on not confirmed clues about MHS. Based on this work, the automatic process of content selection in multi-document summarization methods may be performed based on strategies systematically identified in MHS. / A sumarização humana multidocumento (SHM), que consiste na produção manual de um sumário a partir de uma coleção de textos, provenientes de fontes-distintas, que abordam um mesmo assunto, é uma tarefa linguística até então pouco explorada. Tomando-se como motivação o fato de que sumários monodocumento são compostos por informações que apresentam características recorrentes, a ponto de revelar estratégias de sumarização, objetivou-se investigar sumários multidocumento com o objetivo de identificar estratégias de SHM. Para a identificação das estratégias de SHM, os textos-fonte (isto é, notícias) das 50 coleções do corpus multidocumento em português CSTNews (CARDOSO et al., 2011) foram manualmente alinhados em nível sentencial aos seus respectivos sumários humanos, relevando, assim, a origem das informações selecionadas para compor os sumários. Com o intuito de identificar se as informações selecionadas para compor os sumários apresentam características recorrentes, as sentenças alinhadas (e não-alinhadas) foram caracterizadas de forma semiautomática em função de um conjunto de atributos linguísticos identificados na literatura. Esses atributos traduzem as estratégias de seleção de conteúdo da sumarização monodocumento e os indícios sobre a SHM. Por meio da análise manual das caracterizações das sentenças alinhadas e não-alinhadas, identificou-se que as sentenças selecionadas para compor os sumários multidocumento comumente apresentam certos atributos, como localização das sentenças no texto e redundância. Essa constatação foi confirmada pelo conjunto de regras formais aprendidas por um algoritmo de Aprendizado de Máquina (AM) a partir das mesmas caracterizações. Tais regras traduzem, assim, estratégias de SHM. Quando aprendidas e testadas no CSTNews pelo AM, as regras obtiveram precisão de 71,25%. Para avaliar a pertinência das regras, 2 avaliações intrínsecas foram realizadas, a saber: (i) verificação da ocorrência das estratégias em outro corpus, e (ii) comparação da qualidade de sumários produzidos pelas estratégias de SHM com a qualidade de sumários produzidos por estratégias diferentes. Na avaliação (i), realizada automaticamente por AM, as regras aprendidas a partir do CSTNews foram testadas em um corpus jornalístico distinto e obtiveram a precisão de 70%, muito próxima da obtida no corpus de treinamento (CSTNews). Na avaliação (ii), a qualidade, avaliada de forma manual por 10 linguistas computacionais, foi considerada superior à qualidade dos demais sumários de comparação. Além de descrever características relativas aos sumários multidocumento, este trabalho, uma vez que gera regras formais (ou seja, explícitas e não-ambíguas), tem potencial de subsidiar a Sumarização Automática Multidocumento (SAM), tornando-a mais linguisticamente motivada. A SAM consiste em gerar sumários multidocumento de forma automática e, para tanto, baseava-se na adaptação das estratégias identificadas na sumarização monodocumento ou apenas em indícios, não comprovados sistematicamente, sobre a SHM. Com base neste trabalho, a seleção de conteúdo em métodos de SAM poderá ser feita com base em estratégias identificadas de forma sistemática na SHM.
6

Aplicação de conhecimento léxico-conceitual na sumarização multidocumento multilíngue

Tosta, Fabricio Elder da Silva 27 February 2014 (has links)
Made available in DSpace on 2016-06-02T20:25:23Z (GMT). No. of bitstreams: 1 6554.pdf: 2657931 bytes, checksum: 11403ad2acdeafd11148154c92757f20 (MD5) Previous issue date: 2014-02-27 / Financiadora de Estudos e Projetos / Traditionally, Multilingual Multi-document Automatic Summarization (MMAS) is a computational application that, from a single collection of source-texts on the same subject/topic in at least two languages, produces an informative and generic summary (extract) in one of these languages. The simplest methods automatically translate the source-texts and, from a monolingual collection, apply content selection strategies based on shallow and/or deep linguistic knowledge. Therefore, the MMAS applications need to identify the main information of the collection, avoiding the redundancy, but also treating the problems caused by the machine translation (MT) of the full source-texts. Looking for alternatives to the traditional scenario of MMAS, we investigated two methods (Method 1 and 2) that once based on deep linguistic knowledge of lexical-conceptual level avoid the full MT of the sourcetexts, generating informative and cohesive/coherent summaries. In these methods, the content selection starts with the score and the ranking of the original sentences based on the frequency of occurrence of the concepts in the collection, expressed by their common names. In Method 1, only the most well-scored and non redundant sentences from the user s language are selected to compose the extract, until it reaches the compression rate. In Method 2, the original sentences which are better ranked and non redundant are selected to the summary without privileging the user s language; in cases which sentences that are not in the user s language are selected, they are automatically translated. In order to producing automatic summaries according to Methods 1 and 2 and their subsequent evaluation, the CM2News corpus was built. The corpus has 20 collections of news texts, 1 original text in English and 1 original text in Portuguese, both on the same topic. The common names of CM2News were identified through morphosyntactic annotation and then it was semiautomatically annotated with the concepts in Princeton WordNet through the Mulsen graphic editor, which was especially developed for the task. For the production of extracts according to Method 1, only the best ranked sentences in Portuguese were selected until the compression rate was reached. For the production of extracts according to Method 2, the best ranked sentences were selected, without privileging the language of the user. If English sentences were selected, they were automatically translated into Portuguese by the Bing translator. The Methods 1 and 2 were evaluated intrinsically considering the linguistic quality and informativeness of the summaries. To evaluate linguistic quality, 15 computational linguists analyzed manually the grammaticality, non-redundancy, referential clarity, focus and structure / coherence of the summaries and to evaluate the informativeness of the sumaries, they were automatically compared to reference sumaries by ROUGE measures. In both evaluations, the results have shown the better performance of Method 1, which might be explained by the fact that sentences were selected from a single source text. Furthermore, we highlight the best performance of both methods based on lexicalconceptual knowledge compared to simpler methods of MMAS, which adopted the full MT of the source-texts. Finally, it is noted that, besides the promising results on the application of lexical-conceptual knowledge, this work has generated important resources and tools for MMAS, such as the CM2News corpus and the Mulsen editor. / Tradicionalmente, a Sumarização Automática Multidocumento Multilíngue (SAMM) é uma aplicação que, a partir de uma coleção de textos sobre um mesmo assunto em ao menos duas línguas distintas, produz um sumário (extrato) informativo e genérico em uma das línguas-fonte. Os métodos mais simples realizam a tradução automática (TA) dos textos-fonte e, a partir de uma coleção monolíngue, aplicam estratégias superficiais e/ou profundas de seleção de conteúdo. Dessa forma, a SAMM precisa não só identificar a informação principal da coleção para compor o sumário, evitando-se a redundância, mas também lidar com os problemas causados pela TA integral dos textos-fonte. Buscando alternativas para esse cenário, investigaram-se dois métodos (Método 1 e 2) que, uma vez pautados em conhecimento profundo do tipo léxico-conceitual, evitam a TA integral dos textos-fonte, gerando sumários informativos e coesos/coerentes. Neles, a seleção do conteúdo tem início com a pontuação e o ranqueamento das sentenças originais em função da frequência de ocorrência na coleção dos conceitos expressos por seus nomes comuns. No Método 1, apenas as sentenças mais bem pontuadas na língua do usuário e não redundantes entre si são selecionadas para compor o sumário até que se atinja a taxa de compressão. No Método 2, as sentenças originais mais bem ranqueadas e não redundantes entre si são selecionadas para compor o sumário sem que se privilegie a língua do usuário; caso sentenças que não estejam na língua do usuário sejam selecionadas, estas são automaticamente traduzidas. Para a produção dos sumários automáticos segundo os Métodos 1 e 2 e subsequente avaliação dos mesmos, construiu-se o corpus CM2News, que possui 20 coleções de notícias jornalísticas, cada uma delas composta por 1 texto original em inglês e 1 texto original em português sobre um mesmo assunto. Os nomes comuns do CM2News foram identificados via anotação morfossintática e anotados com os conceitos da WordNet de Princeton de forma semiautomática, ou seja, por meio do editor gráfico MulSen desenvolvido para a tarefa. Para a produção dos sumários segundo o Método 1, somente as sentenças em português mais bem pontuadas foram selecionadas até que se atingisse determinada taxa de compressão. Para a produção dos sumários segundo o Método 2, as sentenças mais pontuadas foram selecionadas sem privilegiar a língua do usuário. Caso as sentenças selecionadas estivessem em inglês, estas foram automaticamente traduzidas para o português pelo tradutor Bing. Os Métodos 1 e 2 foram avaliados de forma intrínseca, considerando-se a qualidade linguística e a informatividade dos sumários. Para avaliar a qualidade linguística, 15 linguistas computacionais analisaram manualmente a gramaticalidade, a não-redundância, a clareza referencial, o foco e a estrutura/coerência dos sumários e, para avaliar a informatividade, os sumários foram automaticamente comparados a sumários de referência pelo pacote de medidas ROUGE. Em ambas as avaliações, os resultados evidenciam o melhor desempenho do Método 1, o que pode ser justificado pelo fato de que as sentenças selecionadas são provenientes de um mesmo texto-fonte. Além disso, ressalta-se o melhor desempenho dos dois métodos baseados em conhecimento léxico-conceitual frente aos métodos mais simples de SAMM, os quais realizam a TA integral dos textos-fonte. Por fim, salienta-se que, além dos resultados promissores sobre a aplicação de conhecimento léxico-conceitual, este trabalho gerou recursos e ferramentas importantes para a SAMM, como o corpus CM2News e o editor MulSen.
7

Investigação de métodos de sumarização automática multidocumento baseados em hierarquias conceituais

Zacarias, Andressa Caroline Inácio 29 March 2016 (has links)
Submitted by Livia Mello (liviacmello@yahoo.com.br) on 2016-09-30T19:20:49Z No. of bitstreams: 1 DissACIZ.pdf: 2734710 bytes, checksum: bf061fead4f2a8becfcbedc457a68b25 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T16:19:10Z (GMT) No. of bitstreams: 1 DissACIZ.pdf: 2734710 bytes, checksum: bf061fead4f2a8becfcbedc457a68b25 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T16:19:17Z (GMT) No. of bitstreams: 1 DissACIZ.pdf: 2734710 bytes, checksum: bf061fead4f2a8becfcbedc457a68b25 (MD5) / Made available in DSpace on 2016-10-20T16:19:25Z (GMT). No. of bitstreams: 1 DissACIZ.pdf: 2734710 bytes, checksum: bf061fead4f2a8becfcbedc457a68b25 (MD5) Previous issue date: 2016-03-29 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / The Automatic Multi-Document Summarization (MDS) aims at creating a single summary, coherent and cohesive, from a collection of different sources texts, on the same topic. The creation of these summaries, in general extracts (informative and generic), requires the selection of the most important sentences from the collection. Therefore, one may use superficial linguistic knowledge (or statistic) or deep knowledge. It is important to note that deep methods, although more expensive and less robust, produce more informative extracts and with more linguistic quality. For the Portuguese language, the sole deep methods that use lexical-conceptual knowledge are based on the frequency of the occurrence of the concepts in the collection for the selection of a content. Considering the potential for application of semantic-conceptual knowledge, the proposition is to investigate MDS methods that start with representation of lexical concepts of source texts in a hierarchy for further exploration of certain hierarchical properties able to distinguish the most relevant concepts (in other words, the topics from a collection of texts) from the others. Specifically, 3 out of 50 CSTNews (multi-document corpus of Portuguese reference) collections were selected and the names that have occurred in the source texts of each collection were manually indexed to the concepts of the WordNet from Princenton (WN.Pr), engendering at the end, an hierarchy with the concepts derived from the collection and other concepts inherited from the WN.PR for the construction of the hierarchy. The hierarchy concepts were characterized in 5 graph metrics (of relevancy) potentially relevant to identify the concepts that compose a summary: Centrality, Simple Frequency, Cumulative Frequency, Closeness and Level. Said characterization was analyzed manually and by machine learning algorithms (ML) with the purpose of verifying the most suitable measures to identify the relevant concepts of the collection. As a result, the measure Centrality was disregarded and the other ones were used to propose content selection methods to MDS. Specifically, 2 sentences selection methods were selected which make up the extractive methods: (i) CFSumm whose content selection is exclusively based on the metric Simple Frequency, and (ii) LCHSumm whose selection is based on rules learned by machine learning algorithms from the use of all 4 relevant measures as attributes. These methods were intrinsically evaluated concerning the informativeness, by means of the package of measures called ROUGE, and the evaluation of linguistic quality was based on the criteria from the TAC conference. Therefore, the 6 human abstracts available in each CSTNews collection were used. Furthermore, the summaries generated by the proposed methods were compared to the extracts generated by the GistSumm summarizer, taken as baseline. The two methods got satisfactory results when compared to the GistSumm baseline and the CFSumm method stands out upon the LCHSumm method. / Na Sumarização Automática Multidocumento (SAM), busca-se gerar um único sumário, coerente e coeso, a partir de uma coleção de textos, de diferentes fontes, que tratam de um mesmo assunto. A geração de tais sumários, comumente extratos (informativos e genéricos), requer a seleção das sentenças mais importantes da coleção. Para tanto, pode-se empregar conhecimento linguístico superficial (ou estatística) ou conhecimento profundo. Quanto aos métodos profundos, destaca-se que estes, apesar de mais caros e menos robustos, produzem extratos mais informativos e com mais qualidade linguística. Para o português, os únicos métodos profundos que utilizam conhecimento léxico-conceitual baseiam na frequência de ocorrência dos conceitos na coleção para a seleção de conteúdo. Tendo em vista o potencial de aplicação do conhecimento semântico-conceitual, propôs-se investigar métodos de SAM que partem da representação dos conceitos lexicais dos textos-fonte em uma hierarquia para a posterior exploração de certas propriedades hierárquicas capazes de distinguir os conceitos mais relevantes (ou seja, os tópicos da coleção) dos demais. Especificamente, selecionaram-se 3 das 50 coleções do CSTNews, corpus multidocumento de referência do português, e os nomes que ocorrem nos textos-fonte de cada coleção foram manualmente indexados aos conceitos da WordNet de Princeton (WN.Pr), gerando, ao final, uma hierarquia com os conceitos constitutivos da coleção e demais conceitos herdados da WN.Pr para a construção da hierarquia. Os conceitos da hierarquia foram caracterizados em função de 5 métricas (de relevância) de grafo potencialmente pertinentes para a identificação dos conceitos a comporem um sumário: Centrality, Simple Frequency, Cumulative Frequency, Closeness e Level. Tal caracterização foi analisada de forma manual e por meio de algoritmos de Aprendizado de Máquina (AM) com o objetivo de verificar quais medidas seriam as mais adequadas para identificar os conceitos relevantes da coleção. Como resultado, a medida Centrality foi descartada e as demais utilizadas para propor métodos de seleção de conteúdo para a SAM. Especificamente, propuseram-se 2 métodos de seleção de sentenças, os quais compõem os métodos extrativos: (i) CFSumm, cuja seleção de conteúdo se baseia exclusivamente na métrica Simple Frequency, e (ii) LCHSumm, cuja seleção se baseia em regras aprendidas por algoritmos de AM a partir da utilização em conjunto das 4 medidas relevantes como atributos. Tais métodos foram avaliados intrinsecamente quanto à informatividade, por meio do pacote de medidas ROUGE, e qualidade linguística, com base nos critérios da conferência TAC. Para tanto, utilizaram-se os 6 abstracts humanos disponíveis em cada coleção do CSTNews. Ademais, os sumários gerados pelos métodos propostos foram comparados aos extratos gerados pelo sumarizador GistSumm, tido como baseline. Os dois métodos obtiveram resultados satisfatórios quando comparados ao baseline GistSumm e o método CFSumm se sobressai ao método LCHSumm. / FAPESP 2014/12817-4
8

Investigação de modelos de coerência local para sumários multidocumento / Investigation of local coherence models for multri-document summaries

Márcio de Souza Dias 10 May 2016 (has links)
A sumarização multidocumento consiste na tarefa de produzir automaticamente um único sumário a partir de um conjunto de textos derivados de um mesmo assunto. É imprescindível que seja feito o tratamento de fenômenos que ocorrem neste cenário, tais como: (i) a redundância, a complementaridade e a contradição de informações; (ii) a uniformização de estilos de escrita; (iii) tratamento de expressões referenciais; (iv) a manutenção de focos e perspectivas diferentes nos textos; (v) e a ordenação temporal das informações no sumário. O tratamento de tais fenômenos contribui significativamente para que seja produzido ao final um sumário informativo e coerente, características difíceis de serem garantidas ainda que por um humano. Um tipo particular de coerência estudado nesta tese é a coerência local, a qual é definida por meio de relações entre enunciados (unidades menores) em uma sequência de sentenças, de modo a garantir que os relacionamentos contribuirão para a construção do sentido do texto em sua totalidade. Partindo do pressuposto de que o uso de conhecimento discursivo pode melhorar a avaliação da coerência local, o presente trabalho propõe-se a investigar o uso de relações discursivas para elaborar modelos de coerência local, os quais são capazes de distinguir automaticamente sumários coerentes dos incoerentes. Além disso, um estudo sobre os erros que afetam a Qualidade Linguística dos sumários foi realizado com o propósito de verificar quais são os erros que afetam a coerência local dos sumários, se os modelos de coerência podem identificar tais erros e se há alguma relação entre os modelos de coerência e a informatividade dos sumários. Para a realização desta pesquisa foi necessário fazer o uso das informações semântico-discursivas dos modelos CST (Cross-document Structure Theory) e RST (Rhetorical Structure Theory) anotadas no córpus, de ferramentas automáticas, como o parser Palavras e de algoritmos que extraíram informações do córpus. Os resultados mostraram que o uso de informações semântico-discursivas foi bem sucedido na distinção dos sumários coerentes dos incoerentes e que os modelos de coerência implementados nesta tese podem ser usados na identificação de erros da qualidade linguística que afetam a coerência local. / Multi-document summarization is the task of automatically producing a single summary from a collection of texts derived from the same subject. It is essential to treat many phenomena, such as: (i) redundancy, complementarity and contradiction of information; (ii) writing styles standardization; (iii) treatment of referential expressions; (iv) text focus and different perspectives; (v) and temporal ordering of information in the summary. The treatment of these phenomena contributes to the informativeness and coherence of the final summary. A particular type of coherence studied in this thesis is the local coherence, which is defined by the relationship between statements (smallest units) in a sequence of sentences. The local coherence contributes to the construction of textual meaning in its totality. Assuming that the use of discursive knowledge can improve the evaluation of the local coherence, this thesis proposes to investigate the use of discursive relations to develop local coherence models, which are able to automatically distinguish coherent summaries from incoherent ones. In addition, a study on the errors that affect the Linguistic Quality of the summaries was conducted in order to verify what are the errors that affect the local coherence of summaries, as well as if the coherence models can identify such errors, and whether there is any relationship between coherence models and informativenessof summaries. For thisresearch, it wasnecessary theuseof semantic-discursive information of CST models (Cross-document Structure Theory) and RST (Rhetorical Structure Theory) annoted in the corpora, automatic tools, parser as Palavras, and algorithms that extract information from the corpus. The results showed that the use of semantic-discursive information was successful on the distinction between coherent and incoherent summaries, and that the information about coherence can be used in error detection of linguistic quality that affect the local coherence.
9

Extractive Multi-document Summarization of News Articles

Grant, Harald January 2019 (has links)
Publicly available data grows exponentially through web services and technological advancements. To comprehend large data-streams multi-document summarization (MDS) can be used. In this research, the area of multi-document summarization is investigated. Multiple systems for extractive multi-document summarization are implemented using modern techniques, in the form of the pre-trained BERT language model for word embeddings and sentence classification. This is combined with well proven techniques, in the form of the TextRank ranking algorithm, the Waterfall architecture and anti-redundancy filtering. The systems are evaluated on the DUC-2002, 2006 and 2007 datasets using the ROUGE metric. Where the results show that the BM25 sentence representation implemented in the TextRank model using the Waterfall architecture and an anti-redundancy technique outperforms the other implementations, providing competitive results with other state-of-the-art systems. A cohesive model is derived from the leading system and tried in a user study using a real-world application. The user study is conducted using a real-time news detection application with users from the news-domain. The study shows a clear favour for cohesive summaries in the case of extractive multi-document summarization. Where the cohesive summary is preferred in the majority of cases.
10

應用文本主題與關係探勘於多文件自動摘要方法之研究:以電影評論文章為例 / Application of text topic and relationship mining for multi-document summarization: using movie reviews as an example

林孟儀 Unknown Date (has links)
由於網際網路的普及造成資訊量愈來愈大,在資訊的搜尋、整理與閱讀上會耗費許多時間,因此本研究提出一應用文本主題及關係探勘的方法,將多份文件自動生成一篇摘要,以幫助使用者能降低資訊的閱讀時間,並能快速理解文件所欲表達之意涵。 本研究以電影評論文章為例,結合文章結構的概念,將影評摘要分為「電影資訊」、「電影劇情介紹」及「心得結論」三部分,其中「電影資訊」及「心得結論」為透過本研究建置之電影領域相關詞庫比對得出。接著將餘下之段落歸屬於「電影劇情介紹」,並透過LDA主題模型將段落分群,再運用主題關係地圖的概念挑選各群之代表段落並排序,最後將各段落去除連接詞及將代名詞還原為其所指之主詞,以形成一篇列點式影評摘要。 研究結果顯示,本研究所實驗之三部電影,產生之摘要能涵蓋較多的資訊內容,提升了摘要之多樣性,在與最佳範本摘要的相似度比對上,分別提升了10.8228%、14.0123%及25.8142%,可知本研究方法能有效掌握文件之重點內容,生成之摘要更為全面,藉由此方法讓使用者自動彙整電影評論文章,以生成一精簡之摘要,幫助使用者節省其在資訊的搜尋及閱讀的時間,以便能快速了解相關電影之資訊及評論。 / The rapid development of information technology over the past decades has dramatically increased the amount of online information. Because of the time-wasting on absorbing large amounts of information for users, we would like to present a method in this thesis by using text topic and relationship mining for multi-document summarization to help users grasp the theme of multiple documents quickly and easily by reading the accurate summary without reading the whole documents. We use movie reviews as an example of multi-document summarization and apply the concept of article structures to categorize summary into film data, film orientation and conclusion by comparing the thesaurus of movie review field built by this thesis. Then we cluster the paragraphs in the structure of film orientation into different topics by Latent Dirichlet Allocation (LDA). Next, we apply the concept of text relationship map, a network of paragraphs and the node in the network referring to a paragraph and an edge indicating that the corresponding paragraphs are related to each other, to extract the most important paragraph in each topic and order them. Finally, we remove conjunctions and replace pronouns with the name it indicates in each extracted paragraph s and generate a bullet-point summary. From the result, the summary produced by this thesis can cover different topics of contents and improve the diversity of the summary. The similarities compared with the produced summaries and the best-sample summaries raise of 10.8228%, 14.0123% and 25.8142% respectively. The method presented in this thesis grasps the key contents effectively and generates a comprehensive summary. By providing this method, we try to let users aggregate the movie reviews automatically and generate a simplified summary to help them reduce the time in searching and reading articles.

Page generated in 0.0604 seconds