11 |
Comparative study of neural networks and design of experiments to the classification of HIV status / Wilbert Sibanda.Sibanda, Wilbert January 2013 (has links)
This research addresses the novel application of design of experiment, artificial neural net-works and logistic regression to study the effect of demographic characteristics on the risk of acquiring HIV infection among the antenatal clinic attendees in South Africa. The annual antenatal HIV survey is the only major national indicator for HIV prevalence in South Africa. This is a vital technique to understand the changes in the HIV epidemic over time. The annual antenatal clinic data contains the following demographic characteristics for each pregnant woman; age (herein called mother's age), partner's age (herein father's age), population group (race), level of education, gravidity (number of pregnancies), parity (number of children born), HIV and syphilis status. This project applied a screening design of experiment technique to rank the effects of individual demographic characteristics on the risk of acquiring an HIV infection. There are a various screening design techniques such as fractional or full factorial and Plackett-Burman designs. In this work, a two-level fractional factorial design was selected for the purposes of screening. In addition to screening designs, this project employed response surface methodologies (RSM) to estimate interaction and quadratic effects of demographic characteristics using a central composite face-centered and a Box-Behnken design. Furthermore, this research presents the novel application of multi-layer perceptron’s (MLP) neural networks to model the demographic characteristics of antenatal clinic attendees. A review report was produced to study the application of neural networks to modelling HIV/AIDS around the world. The latter report is important to enhance our understanding of the extent to which neural networks have been applied to study the HIV/AIDS pandemic. Finally, a binary logistic regression technique was employed to benchmark the results obtained by the design of experiments and neural networks methodologies. The two-level fractional factorial design demonstrated that HIV prevalence was highly sensitive to changes in the mother's age (15-55 years) and level of her education (Grades 0-13). The central composite face centered and Box-Behnken designs employed to study the individual and interaction effects of demographic characteristics on the spread of HIV in South Africa, demonstrated that HIV status of an antenatal clinic attendee was highly sensitive to changes in pregnant mother's age and her educational level. In addition, the interaction of the mother's age with other demographic characteristics was also found to be an important determinant of the risk of acquiring an HIV infection. Furthermore, the central composite face centered and Box-Behnken designs illustrated that, individual-ally the pregnant mother's parity and her partner's age had no marked effect on her HIV status. However, the pregnant woman’s parity and her male partner’s age did show marked effects on her HIV status in “two way interactions with other demographic characteristics”. The multilayer perceptron (MLP) sensitivity test also showed that the age of the pregnant woman had the greatest effect on the risk of acquiring an HIV infection, while her gravidity and syphilis status had the lowest effects. The outcome of the MLP modelling produced the same results obtained by the screening and response surface methodologies. The binary logistic regression technique was compared with a Box-Behnken design to further elucidate the differential effects of demographic characteristics on the risk of acquiring HIV amongst pregnant women. The two methodologies indicated that the age of the pregnant woman and her level of education had the most profound effects on her risk of acquiring an HIV infection. To facilitate the comparison of the performance of the classifiers used in this study, a receiver operating characteristics (ROC) curve was applied. Theoretically, an ROC analysis provides tools to select optimal models and to discard suboptimal ones independent from the cost context or the classification distribution. SAS Enterprise MinerTM was employed to develop the required receiver-of-characteristics (ROC) curves. To validate the results obtained by the above classification methodologies, a credit scoring add-on in SAS Enterprise MinerTM was used to build binary target scorecards comprised of HIV positive and negative datasets for probability determination. The process involved grouping variables using weights-of-evidence (WOE), prior to performing a logistic regression to produce predicted probabilities. The process of creating bins for the scorecard enables the study of the inherent relationship between demographic characteristics and an in-dividual’s HIV status. This technique increases the understanding of the risk ranking ability of the scorecard method, while offering an added advantage of being predictive.
|
12 |
Comparative study of neural networks and design of experiments to the classification of HIV status / Wilbert Sibanda.Sibanda, Wilbert January 2013 (has links)
This research addresses the novel application of design of experiment, artificial neural net-works and logistic regression to study the effect of demographic characteristics on the risk of acquiring HIV infection among the antenatal clinic attendees in South Africa. The annual antenatal HIV survey is the only major national indicator for HIV prevalence in South Africa. This is a vital technique to understand the changes in the HIV epidemic over time. The annual antenatal clinic data contains the following demographic characteristics for each pregnant woman; age (herein called mother's age), partner's age (herein father's age), population group (race), level of education, gravidity (number of pregnancies), parity (number of children born), HIV and syphilis status. This project applied a screening design of experiment technique to rank the effects of individual demographic characteristics on the risk of acquiring an HIV infection. There are a various screening design techniques such as fractional or full factorial and Plackett-Burman designs. In this work, a two-level fractional factorial design was selected for the purposes of screening. In addition to screening designs, this project employed response surface methodologies (RSM) to estimate interaction and quadratic effects of demographic characteristics using a central composite face-centered and a Box-Behnken design. Furthermore, this research presents the novel application of multi-layer perceptron’s (MLP) neural networks to model the demographic characteristics of antenatal clinic attendees. A review report was produced to study the application of neural networks to modelling HIV/AIDS around the world. The latter report is important to enhance our understanding of the extent to which neural networks have been applied to study the HIV/AIDS pandemic. Finally, a binary logistic regression technique was employed to benchmark the results obtained by the design of experiments and neural networks methodologies. The two-level fractional factorial design demonstrated that HIV prevalence was highly sensitive to changes in the mother's age (15-55 years) and level of her education (Grades 0-13). The central composite face centered and Box-Behnken designs employed to study the individual and interaction effects of demographic characteristics on the spread of HIV in South Africa, demonstrated that HIV status of an antenatal clinic attendee was highly sensitive to changes in pregnant mother's age and her educational level. In addition, the interaction of the mother's age with other demographic characteristics was also found to be an important determinant of the risk of acquiring an HIV infection. Furthermore, the central composite face centered and Box-Behnken designs illustrated that, individual-ally the pregnant mother's parity and her partner's age had no marked effect on her HIV status. However, the pregnant woman’s parity and her male partner’s age did show marked effects on her HIV status in “two way interactions with other demographic characteristics”. The multilayer perceptron (MLP) sensitivity test also showed that the age of the pregnant woman had the greatest effect on the risk of acquiring an HIV infection, while her gravidity and syphilis status had the lowest effects. The outcome of the MLP modelling produced the same results obtained by the screening and response surface methodologies. The binary logistic regression technique was compared with a Box-Behnken design to further elucidate the differential effects of demographic characteristics on the risk of acquiring HIV amongst pregnant women. The two methodologies indicated that the age of the pregnant woman and her level of education had the most profound effects on her risk of acquiring an HIV infection. To facilitate the comparison of the performance of the classifiers used in this study, a receiver operating characteristics (ROC) curve was applied. Theoretically, an ROC analysis provides tools to select optimal models and to discard suboptimal ones independent from the cost context or the classification distribution. SAS Enterprise MinerTM was employed to develop the required receiver-of-characteristics (ROC) curves. To validate the results obtained by the above classification methodologies, a credit scoring add-on in SAS Enterprise MinerTM was used to build binary target scorecards comprised of HIV positive and negative datasets for probability determination. The process involved grouping variables using weights-of-evidence (WOE), prior to performing a logistic regression to produce predicted probabilities. The process of creating bins for the scorecard enables the study of the inherent relationship between demographic characteristics and an in-dividual’s HIV status. This technique increases the understanding of the risk ranking ability of the scorecard method, while offering an added advantage of being predictive.
|
13 |
FAST NEURAL NETWORK ALGORITHM FOR SOLVING CLASSIFICATION TASKSAlbarakati, Noor 30 April 2012 (has links)
Classification is one-out-of several applications in the neural network (NN) world. Multilayer perceptron (MLP) is the common neural network architecture which is used for classification tasks. It is famous for its error back propagation (EBP) algorithm, which opened the new way for solving classification problems given a set of empirical data. In the thesis, we performed experiments by using three different NN structures in order to find the best MLP neural network structure for performing the nonlinear classification of multiclass data sets. A developed learning algorithm used here is the batch EBP algorithm which uses all the data as a single batch while updating the NN weights. The batch EBP speeds up training significantly and this is also why the title of the thesis is dubbed 'fast NN …'. In the batch EBP, and when in the output layer a linear neurons are used, one implements the pseudo-inverse algorithm to calculate the output layer weights. In this way one always finds the local minimum of a cost function for a given hidden layer weights. Three different MLP neural network structures have been investigated while solving classification problems having K classes: one model/K output layer neurons, K separate models/One output layer neuron, and K joint models/One output layer neuron. The extensive series of experiments performed within the thesis proved that the best structure for solving multiclass classification problems is a K joint models/One output layer neuron structure.
|
14 |
Deep Learning based Classification of FDG-PET Data for Alzheimer's DiseaseJanuary 2017 (has links)
abstract: Alzheimer’s Disease (AD), a neurodegenerative disease is a progressive disease that affects the brain gradually with time and worsens. Reliable and early diagnosis of AD and its prodromal stages (i.e. Mild Cognitive Impairment(MCI)) is essential. Fluorodeoxyglucose (FDG) positron emission tomography (PET) measures the decline in the regional cerebral metabolic rate for glucose, offering a reliable metabolic biomarker even on presymptomatic AD patients. PET scans provide functional information that is unique and unavailable using other types of imaging. The computational efficacy of FDG-PET data alone, for the classification of various Alzheimer’s Diagnostic categories (AD, MCI (LMCI, EMCI), Control) has not been studied. This serves as motivation to correctly classify the various diagnostic categories using FDG-PET data. Deep learning has recently been applied to the analysis of structural and functional brain imaging data. This thesis is an introduction to a deep learning based classification technique using neural networks with dimensionality reduction techniques to classify the different stages of AD based on FDG-PET image analysis.
This thesis develops a classification method to investigate the performance of FDG-PET as an effective biomarker for Alzheimer's clinical group classification. This involves dimensionality reduction using Probabilistic Principal Component Analysis on max-pooled data and mean-pooled data, followed by a Multilayer Feed Forward Neural Network which performs binary classification. Max pooled features result into better classification performance compared to results on mean pooled features. Additionally, experiments are done to investigate if the addition of important demographic features such as Functional Activities Questionnaire(FAQ), gene information helps improve performance. Classification results indicate that our designed classifiers achieve competitive results, and better with the additional of demographic features. / Dissertation/Thesis / Masters Thesis Computer Science 2017
|
15 |
Avançada análise do uso de novos vetores-alvo em MLPs de alta performance / Advanced analysis of using new target vectors on high performance MLPsManzan, José Ricardo Gonçalves 27 September 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work proposes an advanced analysis for MLP performance improvement by adopting new
target vectors. Firstly, a mathematical study is done to evaluate the influence of VBOs used
as target vectors on MLP training. The VBOs provide the largest possible Euclidean distance
between them to improve the training and generalization capability of MLPs. The largest
distance inducement between points from output space leads to direct correspondence on
pattern classification improvement. The various types of target vectors such as VBNs, VBCs
and VNOs are adopted for training of MLP models and their performances are compared with
the model trained by using VBOs. The mathematical evidences of performance improvement
were found on weight updating refinement from backpropagation error stage of the algorithm.
This particular refinement for training with VBOs is useful to preserve the features of each
pattern due to noise interference reduction during the training process from a pattern to another.
Following the mathematical study, more advanced experimental analysis using VBOs with two
databases for pattern recognition is performed. The first database is related to the handwritten
digits for comparing the performances of MLPs trained by adopting VBCs and VNOs with
the performance of MLP trained by adopting VBOs. The results showed higher classification
rates for the MLP trained with VBOs. The second database is constituted by human iris images
in order to perform the comparison of MLP performances using conventional target vectors
and new target ones represented by VBOs. Besides the high performance of MLPs trained
with VBOs on recognition rates, it was concluded that the use of new target vectors provides
high recognition rates with low tolerance for epoch trainings leading to the consequent low
computational load for pattern processing. / O presente trabalho propõe a análise avançada para a melhoria de desempenho de MLP através
do uso de novos vetores-alvo. Primeiramente, por meio de um estudo matemático, avalia-se a
influência dos VBOs sobre o treinamento das MLPs quando são utilizados como vetores-alvo.
Os VBOs possuem a maior distância euclidiana possível entre si, o que leva a supor que
melhora o treinamento e a capacidade de generalização da rede em teste. A hipótese é a de
que a provocação de uma maior distância entre os pontos de saída da rede pode ter relação
direta com a melhoria na classificação dos padrões. Os diferentes tipos de vetores-alvo tais
como VBNs, VBCs e VNOs são utilizados para o treinamento de MLPs e os seus desempenhos
são comparados com a rede treinada adotando-se os VBOs. As evidências matemáticas da
melhoria de desempenho foram encontradas no refinamento da atualização dos pesos, etapa
denominada no algoritmo como retro propagação do erro. Esse refinamento característico
do treinamento com VBOs age no sentido de preservar as características de cada padrão,
reduzindo o ruído de interferência do treinamento de um padrão para outro. Seguindo-se ao
estudo matemático, realiza-se uma análise experimental mais avançada da utilização dos VBOs
por meio de duas bases de dados para reconhecimento de padrões. A primeira base de dados
é a de dígitos manuscritos para comparar os desempenhos de MLPs treinadas com VBCs e
VNOs com aquelas treinadas com VBOs. Os resultados mostraram taxas de classificação
superiores para a MLP treinada com VBOs. A segunda base de dados é formada por imagens
de íris humana com o propósito de realizar a comparação dos desempenhos de MLPs treinadas
com vetores-alvo convencionais e novos vetores-alvo representados pelos VBOs. Além da alta
performance nas taxas de reconhecimento das MLPs treinadas com VBOs, observou-se que
com o uso desses novos vetores-alvo, é possível obter elevadas taxas de reconhecimento com
pouco rigor nas épocas de treinamento, reduzindo-se consequentemente a carga computacional
de processamento dos padrões. / Mestre em Ciências
|
16 |
Training a Multilayer Perceptron to predict the final selling price of an apartment in co-operative housing society sold in Stockholm city with features stemming from open data / Träning av en “Multilayer Perceptron” att förutsäga försäljningspriset för en bostadsrättslägenhet till försäljning i Stockholm city med egenskaper från öppna datakällorTibell, Rasmus January 2014 (has links)
The need for a robust model for predicting the value of condominiums and houses are becoming more apparent as further evidence of systematic errors in existing models are presented. Traditional valuation methods fail to produce good predictions of condominium sales prices and systematic patterns in the errors linked to for example the repeat sales methodology and the hedonic pricing model have been pointed out by papers referenced in this thesis. This inability can lead to monetary problems for individuals and in worst-case economic crises for whole societies. In this master thesis paper we present how a predictive model constructed from a multilayer perceptron can predict the price of a condominium in the centre of Stockholm using objective data from sources publicly available. The value produced by the model is enriched with a predictive interval using the Inductive Conformal Prediction algorithm to give a clear view of the quality of the prediction. In addition, the Multilayer Perceptron is compared with the commonly used Support Vector Regression algorithm to underline the hallmark of neural networks handling of a broad spectrum of features. The features used to construct the Multilayer Perceptron model are gathered from multiple “Open Data” sources and includes data as: 5,990 apartment sales prices from 2011- 2013, interest rates for condominium loans from two major banks, national election results from 2010, geographic information and nineteen local features. Several well-known techniques of improving performance of Multilayer Perceptrons are applied and evaluated. A Genetic Algorithm is deployed to facilitate the process of determine appropriate parameters used by the backpropagation algorithm. Finally, we conclude that the model created as a Multilayer Perceptron using backpropagation can produce good predictions and outperforms the results from the Support Vector Regression models and the studies in the referenced papers. / Behovet av en robust modell för att förutsäga värdet på bostadsrättslägenheter och hus blir allt mer uppenbart alt eftersom ytterligare bevis på systematiska fel i befintliga modeller läggs fram. I artiklar refererade i denna avhandling påvisas systematiska fel i de estimat som görs av metoder som bygger på priser från repetitiv försäljning och hedoniska prismodeller. Detta tillkortakommandet kan leda till monetära problem för individer och i värsta fall ekonomisk kris för hela samhällen. I detta examensarbete påvisar vi att en prediktiv modell konstruerad utifrån en “Multilayer Perceptron” kan estimera priset på en bostadsrättslägenhet i centrala Stockholm baserad på allmänt tillgängligt data (“Öppen Data”). Modellens resultat har utökats med ett prediktivt intervall beräknat utifrån “Inductive Conformal Prediction”- algoritmen som ger en klar bild över estimatets tillförlitlighet. Utöver detta jämförs “Multilayer Perceptron”-algoritmen med en annan vanlig algoritm för maskinlärande, den så kallade “Support Vector Regression” för att påvisa neurala nätverks kvalité och förmåga att hantera dataset med många variabler. De variabler som används för att konstruera “Multilayer Perceptron”-modellen är sammanställda utifrån allmänt tillgängliga öppna datakällor och innehåller information så som: priser från 5990 sålda lägenheter under perioden 2011- 2013, ränteläget för bostadsrättslån från två av de stora bankerna, valresultat från riksdagsvalet 2010, geografisk information och nitton lokala särdrag. Ett flertal välkända förbättringar för “Multilayer Perceptron”-algoritmen har applicerats och evaluerats. En genetisk algoritm har använts för att stödja processen att hitta lämpliga parametrar till “Backpropagation”-algoritmen. I detta arbete drar vi slutsatsen att modellen kan producera goda förutsägelser med en modell konstruerad utifrån ett neuralt nätverk av typen “Multilayer Perceptron” beräknad med “backpropagation”, och därmed utklassar de resultat som levereras av Support Vector Regression modellen och de studier som refererats i denna avhandling
|
17 |
Skip connection in a MLP network for Parkinson’s classificationSteinholtz, Tim January 2021 (has links)
In this thesis, two different architecture designs of a Multi-Layer Perceptron network have been implemented. One architecture being an ordinary MLP, and in the other adding DenseNet inspired skip connections to an MLP architecture. The models were used and evaluated on the classification task, where the goal was to classify if subjects were diagnosed with Parkinson’s disease or not based on vocal features. The models were trained on an openly available dataset for Parkinson’s classification and evaluated on a hold-out set from this dataset and on two datasets recorded in another sound recording environment than the training data. The thesis searched for the answer to two questions; How insensitive models for Parkinson’s classification are to the sound recording environment and how the proposed skip connections in an MLP model could help improve performance and generalization capacity. The thesis results show that the sound environment affects the accuracy. Nevertheless, it concludes that one would be able to overcome this with more time and allow for good accuracy when models are exposed to data from a new sound environment than the training data. As for the question, if the skip connections improve accuracy and generalization, the thesis cannot draw any broad conclusions due to the data that were used. The models had, in general, the best performance with shallow networks, and it is with deeper networks that the skip connections are argued to help improve these attributes. However, when evaluating on the data from a different sound recording environment than the training data, the skip connections had the best performance in two out of three tests. / I denna avhandling har två olika arkitektur designer för ett artificiellt flerskikts neuralt nätverk implementerats. En arkitektur som följer konventionen för ett vanlig MLP nätverk, samt en ny arkitektur som introducerar DenseNet inspirerade genvägs kopplingar i MLP nätverk. Modellerna användes och utvärderades för klassificering, vars mål var att urskilja försökspersoner som friska eller diagnostiserade med Parkinsons sjukdom baserat på röst attribut. Modellerna tränades på ett öppet tillgänglig dataset för Parkinsons klassificering och utvärderades på en delmängd av denna data som inte hade använts för träningen, samt två dataset som kommer från en annan ljudinspelnings miljö än datan för träningen. Avhandlingen sökte efter svaret på två frågor; Hur okänsliga modeller för Parkinsons klassificering är för ljudinspelnings miljön och hur de föreslagna genvägs kopplingarna i en MLP-modell kan bidra till att förbättra prestanda och generalisering kapacitet. Resultaten av avhandlingen visar att ljudmiljön påverkar noggrannheten, men drar slutsatsen att med mer tid skulle man troligen kunna övervinna detta och möjliggöra god noggrannhet i nya ljudmiljöer. När det kommer till om genvägs kopplingarna förbättrar noggrannhet och generalisering, är avhandlingen inte i stånd att dra några breda slutsatser på grund av den data som användes. Modellerna hade generellt bästa prestanda med grunda nätverk, och det är i djupare nätverk som genvägs kopplingarna argumenteras för att förbättra dessa egenskaper. Med det sagt, om man bara kollade på resultaten på datan som är ifrån en annan ljudinspelnings miljö så hade genvägs arkitekturen bättre resultat i två av de tre testerna som utfördes.
|
18 |
Reconhecimento de faces humanas usando redes neurais MLP / Human face recognition using MLP neural networksGaspar, Thiago Lombardi 15 February 2006 (has links)
O objetivo deste trabalho foi desenvolver um algoritmo baseado em redes neurais para o reconhecimento facial. O algoritmo contém dois módulos principais, um módulo para a extração de características e um módulo para o reconhecimento facial, sendo aplicado sobre imagens digitais nas quais a face foi previamente detectada. O método utilizado para a extração de características baseia-se na aplicação de assinaturas horizontais e verticais para localizar os componentes faciais (olhos e nariz) e definir a posição desses componentes. Como entrada foram utilizadas imagens faciais de três bancos distintos: PICS, ESSEX e AT&T. Para esse módulo, a média de acerto foi de 86.6%, para os três bancos de dados. No módulo de reconhecimento foi utilizada a arquitetura perceptron multicamadas (MLP), e para o treinamento dessa rede foi utilizado o algoritmo de aprendizagem backpropagation. As características faciais extraídas foram aplicadas nas entradas dessa rede neural, que realizou o reconhecimento da face. A rede conseguiu reconhecer 97% das imagens que foram identificadas como pertencendo ao banco de dados utilizado. Apesar dos resultados satisfatórios obtidos, constatou-se que essa rede não consegue separar adequadamente características faciais com valores muito próximos, e portanto, não é a rede mais eficiente para o reconhecimento facial / This research presents a facial recognition algorithm based in neural networks. The algorithm contains two main modules: one for feature extraction and another for face recognition. It was applied in digital images from three database, PICS, ESSEX and AT&T, where the face was previously detected. The method for feature extraction was based on previously knowledge of the facial components location (eyes and nose) and on the application of the horizontal and vertical signature for the identification of these components. The mean result obtained for this module was 86.6% for the three database. For the recognition module it was used the multilayer perceptron architecture (MLP), and for training this network it was used the backpropagation algorithm. The extracted facial features were applied to the input of the neural network, that identified the face as belonging or not to the database with 97% of hit ratio. Despite the good results obtained it was verified that the MLP could not distinguish facial features with very close values. Therefore the MLP is not the most efficient network for this task
|
19 |
Integração de redes neurais artificiais ao nariz eletrônico: avaliação aromática de café solúvelBona, Evandro January 2008 (has links)
No description available.
|
20 |
Integração de redes neurais artificiais ao nariz eletrônico: avaliação aromática de café solúvelBona, Evandro January 2008 (has links)
No description available.
|
Page generated in 0.0855 seconds