• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 6
  • Tagged with
  • 27
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Imagerie moléculaire 3D quantitative des tissus en utilisant la microscopie Raman cohérente sans marquage / Quantitative 3D molecular imaging of biological tissues using label-free Coherent Raman microscopy

Canonge, Rafael 19 December 2017 (has links)
Cette thèse porte sur l'utilisation et le développement de techniques de microscopie multiphotonique pour l'imagerie d'échantillons biologiques humains. Une plateforme d'imagerie multiphotonique utilisant les contrastes non linéaires sans marquage tels que la fluorescence à deux photons, la génération de seconde harmonique, et les mécanismes Raman cohérent (CARS et SRS) a été conçue et développée au cours de cette thèse, et les travaux expérimentaux suivant deux axes de recherche principaux sont présentés.Dans une première partie , l'imagerie tridimensionnelle et sans marquage des muqueuses du système digestif humain est comparée aux images histologiques classiques avec marquages colorimétriques. Nous montrons que les techniques multiphotoniques utilisées permettent de reconstituer la structure et de discerner les différents éléments moléculaires présents dans les tissus dans le but d'obtenir une caractérisation des zones touchées par le développement de tumeurs cancéreuses. / This thesis focuses on multiphotonic microscopy techniques development and use in order to image human biological samples. A multiphotonic imaging setup using label-free nonlinear contrasts mechanisms such as two-photons fluorescence, second harmonic generation, or stimulated Raman effect (CARS or SRS) has been designed and developped during this PhD, and I present the experimental work in two main research topics.In a first part, we compare label-free 3D imaging with classic histological imaging using colorimetric labels in human digestive system. We show that multiphotonic technics allow to reconstruct the organization and discern the molecular compounds inside the tissues, in order to get a caratérization of the cancerous tumors developpement.The second part is related to the application of our multimodal setup to the quantitative study of real active molecular compounds real time penetration into in vivo human skin. We show that multiphotonic microscopy make possible to mesure active molecules in depth 3D concentration in the skin in order to understand transcutaneous diffusion mechanisms in cosmetic and pharmacological applications.
2

Etude structurale de biomolécules de grandes tailles, en phase gazeuse, par spectroscopie infrarouge, spectrométrie de mobilité ionique et dissociation induite par attachement d'électron / Gas-phase structures of large biomolecules investigated through IRMPD spectroscopy, Ion Mobility Spectrometry and Electron Capture Dissociation

Lê, Thi Ngà 11 April 2014 (has links)
Cette thèse présente une étude expérimentale et théorique de peptides protonés contenant plusieurs dizaines d’atomes en phase gazeuse. Le premier objectif de ce travail consistait à coupler trois techniques expérimentales complémentaires, la spectroscopie IRMPD, la spectrométrie de mobilité ionique et la dissociation induite par attachement d’électron (ECD), afin de caractériser la structure des peptides amyloïdes Aβ₁₂-₂₈ et de tryptophane zippers TZ1 et TZ4. L’originalité de cette étude porte sur l’analyse de la distribution d’intensité des fragments c/z obtenus en ECD en relation avec les informations structurelles obtenues par mobilité et IRMPD. Grâce à cette approche combinée, nous avons pu proposer les structures les plus probables adoptées en phase gazeuse par ces peptides flexibles. Nous avons montré que la structure native des peptides n’était pas conservée au passage en phase gazeuse. L’interprétation des données expérimentales repose sur un travail théorique important alliant des dynamiques moléculaires utilisant un champ de force AMBER aux méthodes de chimie quantique au niveau DFT pour simuler les spectres vibrationnels des peptides. Le second axe de ce travail a porté sur la conception, la réalisation et la caractérisation d’une nouvelle technique de mise en phase gazeuse de biomolécules et leurs complexes non-covalents par désorption laser IR sur une micro-gouttelette liquide directement sous vide. Cette technique originale pourrait être une alternative aux techniques ESI et MALDI. Nous avons obtenu les premiers spectres de masse et optimisé les paramètres importants de l’expérience : longueur d’onde, intensité laser, résolution en masse du spectromètre à temps de vol. D’autres développements sont en cours pour améliorer la détection et la résolution en masse de ce type de source qui produit des ions avec une grande dispersion en énergie cinétique : piéger les ions dans une trappe quadrupolaire et entraîner les ions dans une détente supersonique. / Gas-phase studies of large biological molecules have emerged with the advent of soft production methods of biomolecular ions under vacuum (like ESI or MALDI) combined to mass spectrometry. The first aim of this work was to use three complementary experimental techniques, namely IRMPD spectroscopy, ion mobility mass spectrometry and electron capture dissociation ECD to probe the gas-phase structures of amyloïd Aβ₁₂-₂₈ and tryptophan zippers TZ1 and TZ4 peptides. The main originality of this study is to analyse the specific c/z product ion abundances in ECD experiments with the structural information gained through IR spectroscopy and ion mobility experiments. With this complementary approach, we were able to assign the most probable gas-phase structures of these flexible peptides. In particular, it is shown that the native structure of the peptides is not conserved in the gas phase. This study relies on the interplay between experiments and theoretical calculations. To that end, we used several theoretical methods, ranging for molecular dynamics using a classical force field (AMBER) to quantum mechanics calculations to simulate the vibrational spectra of the peptides. The second aim of this work was to design, develop and optimize a unique device, coupling a novel source introducing biomolecules in the gas phase, based on laser desorption from liquid micro-droplets directly into vacuum, coupled with a time-of-flight mass spectrometer. This desorption source is an original alternative to the usual methods (ESI or MALDI). Through mass spectrometry techniques, it should allow investigating the complexation processes of non-covalently bound species in conditions as close as the ones encountered in solution. We have recently obtained the first mass spectra. Due to the high velocity spread of the desorbed ions, new developments are needed to improve the mass resolution. In particular, we plan to transfer the ions in a quadrupole ion trap and to perform the laser desorption in front a pulsed valve to stream the ions in the supersonic expansion.
3

Micro-ablation athermique de matériaux transparents par absorption multiphotonique avec une micro-puce laser amplifiée Nd : YAG à impulsions vertes sub-nanosecondes / Athermal micro-ablation of transparent materials by multiphoton absorption with an amplified Nd : Yag microchip laser generating green sub-nanosecond pulses

Mhalla, Taghrid 02 October 2015 (has links)
Les microchip lasers à impulsions sub-nanosecondes peuvent être des alternatives intéressantes aux lasers à impulsions femtosecondes pour le micro-usinage des matériaux transparents par absorption multiphotonique. Ces lasers peuvent facilement atteindre les puissances crêtes nécessaires pour déclencher l'ablation de tous les matériaux, y compris les diamants, céramiques, plastiques, et des verres. En outre, ils sont de faible coût, avec un design compact et robuste. Dans cette thèse, un micro-chip laser Nd:YAG amplifié (532 nm, 300 ps) a été utilisé pour la micro-gravure et le marquage de différents types de matériaux transparents, comme le verre borosilicate D263, le verre BK7 et le thermoplastique SBS. L'analyse des résultats a montré un bon accord avec le modèle d'expulsion de matière suite à la génération d'un plasma provoqué par une absorption laser à deux photons. Une résolution sub-micronique de marquage a été obtenue à l'intérieur d'un verre de borosilicate. Des canaux microfluidiques pour capteurs optiques ont été gravés sur verre BK-7 comprenant des guides d'ondes réalisés par échange d'ionique. Des réseaux denses de micro-canaux ont été fabriqués à la surface de matériaux thermoplastiques avec une zone affectée par les effets thermiques limités à quelques micromètres. En conclusion, ce travail de thèse montre que l'utilisation de ce type de laser permet un micro-usinage de très haute résolution avec des effets thermiques limités. / Microchip lasers with sub-nanosecond pulses are attractive alternative to femtosecond lasers for micromachining in transparent materials by multiphoton absorption. These lasers can easily reach pulse peak powers that are needed to trigger ablation in all materials, including diamond, ceramics, plastics, and glasses. In addition, they are low cost with compact and rugged design. In this thesis, a microchip laser (532 nm, 300 ps) has been used for micro-engraving and marking different types of transparent materials such as borosilicate D263, BK7, and SBS thermoplastic. Experimental resultsare rationalized by the model of matter explosion following the plasma generation induced by the laser two-photon absorption. Sub-micron resolution embedded marking is demonstrated inside borosilicate glass. Micro fluidic channels for optical sensors are engraved on BK-7 glass with ion-doped waveguides. Arrays of dense micro channels are fabricated at the surface of thermoplastics with a zone affected by thermal effects limited to the micron range. In summary, this thesis demonstrates that this type of laser can be efficiently used for high-resolution micro-machining transparent materials with minimal thermal effects.
4

Utilisation d'axicons pour la microscopie à deux photons

Dufour, Pascal 19 April 2018 (has links)
Un des enjeux majeurs de la biochimie et de la biologie cellulaire actuelle est de pouvoir suivre de manière dynamique les événements moléculaires à l'intérieur de la cellule vivante dans son contexte fonctionnel, c'est-à-dire in situ (dans son tissu d'origine). Il ne suffit plus, par exemple, d'identifier une réaction biochimique in vitro pour pouvoir savoir si un enzyme ou un autre rencontrera son substrat à l'intérieur de la cellule. Il apparaît de plus en plus évident que des facteurs spatio-temporels très fins à l'intérieur de la cellule vivante déterminent en grande partie la spécificité des signaux cellulaires. Il suffit de penser aux fluctuations calciques intracellulaires, par exemple, qui participent à une multitude de cascades de signalisation; sans spécificité spatiale et temporelle, la cellule ne pourrait utiliser les signaux calciques de manière utile et efficace. A cette fin, on propose un système de microscopie laser qui incorpore un axicon, lequel a la propriété de focaliser la lumière en un faisceau quasi-Bessel. Le contrôle du profil du faisceau incident sur l'axicon procure une ligne focale sur l'axe longitudinal ayant une intensité constante dans le milieu absorbant ainsi qu'une grande résolution transverse. Conséquemment, nous devons balayer notre échantillon en deux dimensions seulement pour obtenir une image complète de tout le volume, réduisant ainsi considérablement le temps d'acquisition. Nous présenterons les résultats théoriques de la génération d'un faisceau quasi-Bessel dans un échantillon absorbant, les caractéristiques du laser Ti:saphir utilisé ainsi que le schéma proposé pour la microscopie laser avec un axicon. Nous verrons qu'il est possible d'imager des échantillons fluorescents allant jusqu'à 1 mm d'épaisseur avec un seul balayage. Dans cette thèse, nous passerons en revue quelques principes qui sont à la base des avantages de la microscopie par excitation à deux photons afin de mettre en relief certains des défis (résolution spatiale, résolution temporelle, sensibilité, profondeur de pénétration dans le tissu et phototoxicité) pour améliorer l'utilisation de cette approche pour l'imagerie cellulaire fonctionnelle. Les propriétés des faisceaux de Bessel formés par l'axicon seront étudiées en profondeur. Nous décrirons ensuite notre microscope à deux photons avec un axicon et nous présenterons plusieurs résultats obtenus avec ce dernier.
5

Développement d'un microscope à grande profondeur de champ pour l'imagerie fonctionnelle de neurones dans des échantillons épais

Thériault, Gabrielle 23 April 2018 (has links)
Un des plus grands défis de la neuroscience moderne pour parvenir à comprendre et diagnostiquer les maladies du cerveau est de déchiffrer les détails des interactions neuronales dans le cerveau vivant. Pour ce faire, on doit être capable d'observer des populations de cellules vivantes dans leur matrice d'origine avec une bonne résolution spatiale et temporelle. La microscopie à deux photons se prête bien à cet exercice car elle permet d'exciter des fluorophores à de grandes profondeurs dans les tissus biologiques et elle offre une résolution spatiale de l'ordre du micron. Malheureusement, la très bonne résolution tridimensionnelle diminue la résolution temporelle, car l'effet de sectionnement optique causé par la faible profondeur de champ du microscope nous oblige à balayer les échantillons épais une multitude de fois avant de pouvoir compléter l'acquisition d'un grand volume. Dans ce projet de doctorat, nous avons conçu, construit et caractérisé un microscope à deux photons avec une profondeur de champ étendue afin de faciliter l'imagerie fonctionnelle de neurones dans un échantillon épais. Pour augmenter la profondeur de champ du microscope à deux photons, nous avons modifié le faisceau laser entrant dans le système optique afin de générer une aiguille de lumière, orientée axialement, dans l'échantillon au lieu d'un point. Nous modifions le faisceau laser avec un axicon, une lentille en forme de cône qui transforme le faisceau gaussien en un faisceau quasi non-diffractant, de type Bessel-Gauss. Le faisceau d'excitation conserve donc la même résolution transverse à différentes profondeurs dans l'échantillon, éliminant le besoin de balayer l'échantillon à répétition afin de sonder un volume complet. Dans cette thèse, nous démontrons que le microscope à grande profondeur de champ fonctionne effectivement tel que nous l'avons conçu et nous l'utilisons pour faire de l'imagerie calcique dans un réseau tridimensionnel de neurones vivants. Nous présentons aussi les différents avantages de notre système par rapport à la microscopie à deux photons conventionnelle. / One of the greatest challenges of modern neuroscience that will lead to a better understanding and earlier diagnostics of brain sickness is to decipher the details of neuronal interactions in the living brain. To achieve this goal, we must be capable of observing populations of living cells in their original matrix with a good resolution, both spatial and temporal. Two-photon microscopy offers the right tools for this since it presents with a spatial resolution in the order of the micron. Unfortunately, this very good three-dimensional resolution lowers the temporal resolution because the optical sectioning caused by the microscope's small depth of field forces us to scan thick samples repeatedly when acquiring data from a large volume. In this doctoral project, we have designed, built and characterized a two-photon microscope with an extended depth of field with the goal of simplifying the functional imaging of neurons in thick samples. To increase the laser scanning microscope's depth of field, we shaped the laser beam entering the optical system in such a way that a needle of light is generated inside the sample instead of a spot. We modify the laser beam with an axicon, a cone-shaped lens that transforms a gaussian beam into a quasi non-diffractive beam called Bessel-Gauss beam. The excitation beam therefore maintains the same transverse resolution at different depths inside the sample, eliminating the need for many scans in order to probe the entire volume of interest. In this thesis, we demonstrate that the extended depth of field microscope effectively works as we designed it, and we use it to image calcium dynamics in a three-dimensional network of live neurons. We also present the different advantages of our system in comparison with standard two-photon microscopy.
6

Perceptual hashing-based movement compensation applied to in vivo two-photon microscopy

Sadetsky, Gregory 20 April 2018 (has links)
Le mouvement animal, présent lors d’expériences in vivo effectuées à l’aide de microscopie à effet deux photons, nuit à l’observation de phénomènes biologiques et à l’analyse subséquente des flux vidéos acquis. Ceci s’explique entre autres par le fait que, dû au sectionnement optique, tout déplacement dans l’axe z (perpendiculaire au plan d’imagerie) modifie drastiquement l’image et ne permet qu’une observation instable de l’échantillon examiné. En appliquant une fonction de hachage aux images acquises, nous produisons des vecteurs décrivant les qualités perceptuelles de ces images ; ces vecteurs peuvent alors servir à comparer les images une à une, en temps réel. Ces comparaisons nous permettent de réunir les images en groupes correspondant à des plans z distincts. Ainsi, du processus de hachage, de comparaison et de groupage d’images résulte une méthode logicielle de compensation de mouvement en temps réel qui peut être utilisée dans le cadre d’expériences biologiques en laboratoire. / Animal movement during in vivo two-photon microscopy experiments hinders efforts at observing biological phenomena and the subsequent analysis of the acquired video streams. One of the reasons for this is that, due to optical sectioning, any displacement in the z-axis (perpendicular to the plane of imaging) dramatically changes the collected image and thus provides the experimenter with an unstable view of the imaged sample. By applying a hashing function on the acquired video frames, we produce vectors embodying the images’ perceptual qualities; these vectors can then be used to compare the frames one to another, in real-time. These comparisons allow us to group similar images in clusters corresponding to distinct z-planes. In effect, the process of perceptually hashing, comparing and grouping video frames provides us with software-based, real-time movement compensation which can be used in a biological laboratory setting.
7

Imagerie multiphotonique de la sérotonine par contraste endogène : vers un outil pour évaluer la concentration de la sérotonine in vivo

Samson, Karen 18 April 2018 (has links)
La sérotonine (5-HT) est un neurotransmetteur régulant plusieurs fonctions fondamentales du corps : la thermorégulation, le comportement sexuel et alimentaire, le cycle éveil-sommeil, la perception de la douleur, l'anxiété, le contrôle moteur, mais elle est surtout connue pour le contrôle de l'humeur. Le manque de sérotonine dans le système nerveux central est associé aux maladies mentales. Ces maladies sont la dépression, le trouble bipolaire, l’anxiété, le trouble de panique, les phobies, les troubles obsessionnel-compulsifs et la schizophrénie. Un outil pour la détection de la sérotonine et de ses précurseurs nous permettrait d'étudier les mécanismes des diverses maladies impliquant un débalancement de la sérotonine. Dans le système nerveux central, la biosynthèse de la sérotonine se fait dans certains neurones du tronc cérébral. La sérotonine, tout comme son précurseur le tryptophane (Trp), est fortement fluorescente en comparaison à d'autres molécules endogènes. L’imagerie multiphotonique a été exploitée dans le cadre de ce projet pour détecter la sérotonine. Cette technique d’imagerie permet d’obtenir une bonne spécificité et d’offrir un sectionnement optique pour l’imagerie dans les cellules et les tissus. Différents processus d’excitation (à 2- et 3- photons) dans différentes conditions (cellules fixées ou non) ont été explorés afin d’optimiser la détection de l’autofluorescence de la sérotonine. Nous avons donc d’abord développé un système d’imagerie capable de détecter la fluorescence des molécules de la biosynthèse de la sérotonine, excluant le tryptophane. Nous sommes capables de détecter ces espèces isolées à des concentrations avoisinant le milli molaire en solutions. La méthode a été testée dans deux modèles contenant de la sérotonine (cellules et tranches). Les mesures ont démontré un manque de spécificité et sensibilité lorsqu’utilisées dans des systèmes plus complexes que les simples solutions. Ce manque de spécificité et de sensibilité est discuté avec des pistes d’amélioration pour les projets futurs, incluant l’utilisation d’autres modèles mieux contrôlés et d’autres techniques optiques plus avancées. / Serotonin (5-HT) is a neurotransmitter regulating several basic functions of the body: thermoregulation, sexual and food behavior, the sleep-wake cycle, perception of pain, anxiety, motor control, but is best known for control of mood. The lack of serotonin in the central nervous system is associated with mental illness. These diseases are depression, bipolar disorder, anxiety, panic disorder, phobias, obsessive-compulsive disorder and schizophrenia. A detection tool of serotonin and its precursors would allow us to study the mechanism of various diseases involving an imbalance of this neurotransmitter. In the central nervous system, the biosynthesis of serotonin occurs in specific neurons of the brainstem. Serotonin, like its precursor tryptophan (Trp), is highly fluorescent in comparison to other endogenous molecules. Multiphoton fluorescence excitation has been used in this project to detect serotonin without exogenous labels. This fluorescence imaging technique provides a good specificity as well as optical sectioning for imaging in cells and tissues. Different excitation processes (two- and three-photon) under different conditions (fixed cells or not) were explored to optimize the detection of autofluorescence of serotonin. We therefore first developed an imaging system capable of detecting the fluorescence of molecules involved in the biosynthesis of serotonin, excluding tryptophan. We are able to detect these isolated species in solution at concentrations near a millimolar. The method was tested in two models containing serotonin (cells and slices). The measurements have shown a lack of specificity and sensitivity when used in systems more complex than simple solutions. This lack of specificity and sensitivity is discussed with possible improvements for future project including the use of other models with better control of serotonin concentrations, of other more advanced optical techniques such as fluorescence lifetime imaging.
8

Microscopie par génération de troisième harmonique appliquée à la biologie.

Debarre, Delphine 15 September 2006 (has links) (PDF)
Cette thèse a porté sur le développement pour la biologie de la microscopie par génération de troisième harmonique (THG), qui permet la visualisation sans marquage de cellules et de tissus avec une résolution sub-micrométrique. Son application en biologie était jusqu'à présent limitée par le manque d'études du mode de création du signal dans l'échantillon, des sources de contrastes biologiques endogènes ainsi que de la phototoxicité induite. Le travail présenté ici a essentiellement porté sur ces trois questions. Nous avons d'abord étudié théoriquement et expérimentalement l'influence de la structure de l'échantillon et de la focalisation du faisceau excitateur sur le signal THG. Nous avons montré que l'imagerie THG agit sur l'échantillon comme un filtre passe! -bande pour les fréquences spatiales et qu'ajuster la focalisation de l'excitation permet de moduler la visibilité de structures au sein d'un système complexe selon leur forme. Par ailleurs, nous avons caractérisé les propriétés optiques de différents liquides biologiques, qui prédisent qu'un corps lipidique dans un environnement aqueux doit constituer une source efficace de signal intracellulaire. Nous avons démontré que de telles structures peuvent effectivement être suivies et quantifiées par microscopie THG dans de nombreux types de tissus biologiques non marqués, ouvrant la voie à des applications en physiopathologie. Finalement, nous avons appliqué la microscopie THG à la visualisation in vivo et sans marquage du développement embryonnaire précoce chez la drosophile. Sur ce modèle, nous avons étudié les mécanismes de phototoxicité liés à l'imagerie THG et démontré la possibilité de visualiser les embryons en 3D sans perturbation du développement et de quantifier les mouvements morphogénétiques à partir des séquences obtenues.
9

Paquets d'onde vibrationnels créés par ionisation de H2 en champ laser intense

Fabre, Baptiste 09 December 2005 (has links)
Les dernières évolutions technologiques en matière de laser ont permis l'observation de nouveaux phénomènes hautement non-linéaires lors de l'interaction de ces sources brèves et intenses avec la matière. Du point de vue moléculaire, ces processus, tels que l'affaiblissement de la liaison ou la génération d'harmonique, sont consécutifs à la création au sein de l'ion d'un paquet d'onde vibrationnel après ionisation par effet tunnel de la molécule neutre. Il est généralement admis dans nombre d'articles que cette transition électronique conduit à une distribution des états de vibration conforme à celle prédite par l'approximation de Condon. Afin de vérifier la validité de cette assertion, nous avons mis en place un dispositif expérimental original permettant une mesure fiable de l'excitation vibrationnelle de H2+ après ionisation de la molécule neutre par un champ laser intense. Les résultats obtenus contredisent fortement le postulat selon lequel la transition aurait lieu préférentiellement à la séparation internucléaire d'équilibre (approximation de Condon) et remettent en cause les interprétations des expériences de dynamique moléculaire précédentes. En faisant varier la longueur d'onde, nous avons également mis en évidence les processus dominants et l'importance de la structure électronique au sein des différents domaines d'ionisation. Ces mesures ouvrent des perspectives intéressantes quant à la mise en place d'expériences de dynamique moléculaire utilisant un faisceau d'ions moléculaires d'excitation vibrationnelle connue. / The continuing development of femtosecond laser technology allows the study of new, highly non-linear phenomena in laser-molecule interaction. Most scientists agree that the first step of all these processes is the creation of an elctronic wavepacket in the continuum by tunnelling ionisation of the neutral molecule. As a rule, most publications were also unanimous about the vibrational population created in the ion, asumed to be properly described by the classical Condon approximation. Thanks to a unique setup we were able to measure in an unambiguous way the vibrational distribution created by intense-laser-field ionisation. Our study shows a discrepancy between our results and the one predicted by the Condon approximation. Other wavelength-dependent measurements reveal the dominant processes for the different ionisation regimes. These results open new experimental perspectives for the study of the molecular dynamics.
10

Microscopie non linéaire de tissus biologiques : excitation multicouleur, faisceaux de Bessel, et excitation en nappe de lumière

Mahou, Pierre 19 December 2012 (has links) (PDF)
Le travail effectué au cours de cette thèse a porté sur le développement et la mise en œuvre de nouvelles stratégies en microscopie non linéaire permettant d'augmenter le nombre de signaux non linéaires simultanément observables d'une part, et la vitesse d'acquisition d'autre part. Dans un premier temps, nous avons exploré la possibilité de produire des signaux multiples au moyen de deux trains d'impulsions synchronisés de longueur d'onde centrale distincte. Nous avons montré que cette approche permet d'exciter de façon optimale et simultanée trois protéines fluorescentes respectivement bleue, jaune, et rouge. Une application de cette méthode consiste à imager de grands volumes de tissus marqués avec des transgènes Brainbow dans le but d'étudier la connectivité ou le lignage cellulaire. Plus généralement, nous avons montré que cette approche permet de combiner plusieurs signaux non linéaires tels que la fluorescence, la génération de seconde (SHG) et de troisième (THG) harmoniques, ainsi que le mélange à quatre ondes (FWM). Dans un deuxième temps, nous avons étudié la possibilité d'augmenter la vitesse d'imagerie. Pour cela, nous avons mis en œuvre plusieurs manières de produire des faisceaux de Bessel focalisés afin d'augmenter la profondeur de champ d'un microscope à balayage. Enfin, en vue d'augmenter la vitesse d'acquisition tout en préservant le sectionnement optique, nous avons construit un microscope biphotonique à nappe de lumière de profil spatial programmable. Dans cette géométrie nous avons comparé les propriétés d'imagerie de profils d'excitation de type gaussien et de Bessel pour des applications en biologie du développement.

Page generated in 0.0787 seconds