Spelling suggestions: "subject:"multiplication functions""
1 |
The Asymptotics of Some Signed Partition NumbersTaylor S Daniels (19206913) 27 July 2024 (has links)
<p dir="ltr">Applications of the Hardy-Littlewood Method to a class of partition generating functions, in which partitions are weighted (or "signed") using certain functions from multiplicative number theory.</p>
|
2 |
Mean values and correlations of multiplicative functions : the ``pretentious" approachKlurman, Oleksiy 07 1900 (has links)
Le sujet principal de cette thèse est l’étude des valeurs moyennes et corrélations de fonctions
multiplicatives. Les résultats portant sur ces derniers sont subséquemment appliqués à la
résolution de plusieurs problèmes.
Dans le premier chapitre, on rappelle certains résultats classiques concernant les valeurs
moyennes des fonctions multiplicatives. On y énonce également les théorèmes principaux de
la thèse.
Le deuxième chapitre consiste de l’article “Mean values of multiplicative functions over
the function fields". En se basant sur des résultats classiques de Wirsing, de Hall et de Tenenbaum
concernant les fonctions multiplicatives arithmétiques, on énonce et on démontre des
théorèmes qui y correspondent pour les fonctions multiplicatives sur les corps des fonctions
Fq[x]. Ainsi, on résoud un problème posé dans un travail récent de Granville, Harper et
Soundararajan. On décrit dans notre thése certaines caractéristiques du comportement des
fonctions multiplicatives sur les corps de fonctions qui ne sont pas présentes dans le contexte
des corps de nombres. Entre autres, on introduit pour la première fois une notion de
“simulation” pour les fonctions multiplicatives sur les corps de fonctions Fq[x].
Les chapitres 3 et 4 comprennent plusieurs résultats de l’article “Correlations of multiplicative
functions and applications". Dans cet article, on détermine une formule asymptotique
pour les corrélations
X
n6x
f1(P1(n)) · · · fm(Pm(n)),
où f1, . . . ,fm sont des fonctions multiplicatives de module au plus ou égal à 1 ”simulatrices”
qui satisfont certaines hypothèses naturelles, et P1, . . . ,Pm sont des polynomes ayant des coefficients
positifs. On déduit de cette formule plusieurs conséquences intéressantes. D’abord,
on donne une classification des fonctions multiplicatives f : N ! {−1,+1} ayant des sommes
partielles uniformément bornées. Ainsi, on résoud un problème d’Erdos datant de 1957 (dans
la forme conjecturée par Tao). Ensuite, on démontre que si la valeur moyenne des écarts
|f(n + 1) − f(n)| est zéro, alors soit |f| a une valeur moyenne de zéro, soit f(n) = ns avec
iii
Re(s) < 1. Ce résultat affirme une ancienne conjecture de Kátai. Enfin, notre théorème principal
est utilisé pour compter le nombre de représentations d’un entier n en tant que somme
a+b, où a et b proviennent de sous-ensembles multiplicatifs fixés de N. Notre démonstration
de ce résultat, dû à l’origine à Brüdern, évite l’usage de la “méthode du cercle".
Les chapitres 5 et 6 sont basés sur les résultats obtenus dans l’article “Effective asymptotic
formulae for multilinear averages and sign patterns of multiplicative functions," un
travail conjoint avec Alexander Mangerel. D’après une méthode analytique dans l’esprit du
théorème des valeurs moyennes de Halász, on détermine une formule asymptotique pour les
moyennes multidimensionelles
x−l
X
n2[x]l
Y
16j6k
fj(Lj(n)),
lorsque x ! 1, où [x] := [1,x] et L1, . . . ,Lk sont des applications linéaires affines qui satisfont
certaines hypothèses naturelles. Notre méthode rend ainsi une démonstration neuve
d’un résultat de Frantzikinakis et Host avec, également, un terme principal explicite et un
terme d’erreur quantitatif. On applique nos formules à la démonstration d’un phénomène
local-global pour les normes de Gowers des fonctions multiplicatives. De plus, on découvre
et explique certaines irrégularités dans la distribution des suites de signes de fonctions
multiplicatives f : N ! {−1,+1}. Visant de tels résultats, on détermine les densités asymptotiques
des ensembles d’entiers n tels que la fonction f rend une suite fixée de 3 ou 4 signes
dans presque toutes les progressions arithmétiques de 3 ou 4 termes, respectivement, ayant
n comme premier terme. Ceci mène à une généralisation et amélioration du travail de Buttkewitz
et Elsholtz, et donne un complément à un travail récent de Matomäki, Radziwiłł et
Tao sur les suites de signes de la fonction de Liouville. / The main theme of this thesis is to study mean values and correlations of multiplicative
functions and apply the corresponding results to tackle some open problems.
The first chapter contains discussion of several classical facts about mean values of multiplicative
functions and statement of the main results of the thesis.
The second chapter consists of the article “Mean values of multiplicative functions over
the function fields". The main purpose of this chapter is to formulate and prove analog of
several classical results due to Wirsing, Hall and Tenenbaum over the function field Fq[x],
thus answering questions raised in the recent work of Granville, Harper and Soundararajan.
We explain some features of the behaviour of multiplicative functions that are not present
in the number field settings. This is accomplished by, among other things, introducing the
notion of “pretentiousness" over the function fields.
Chapter 3 and Chapter 4 include results of the article “Correlations of multiplicative
functions and applications". Here, we give an asymptotic formula for correlations
X
n_x
f1(P1(n))f2(P2(n)) · · · · · fm(Pm(n))
where f . . . ,fm are bounded “pretentious" multiplicative functions, under certain natural
hypotheses. We then deduce several desirable consequences. First, we characterize all multiplicative
functions f : N ! {−1,+1} with bounded partial sums. This answers a question
of Erdos from 1957 in the form conjectured by Tao. Second, we show that if the average
of the first divided difference of multiplicative function is zero, then either f(n) = ns for
Re(s) < 1 or |f(n)| is small on average. This settles an old conjecture of Kátai. Third, we
apply our theorem to count the number of representations of n = a + b where a,b belong to
some multiplicative subsets of N. This gives a new "circle method-free" proof of the result of
Brüdern.
Chapters 5 and Chapter 6 are based on the results obtained in the article “Effective
asymptotic formulae for multilinear averages and sign patterns of multiplicative functions,"
joint with Alexander Mangerel. Using an analytic approach in the spirit of Halász’ mean
v
value theorem, we compute multidimensional averages
x−l
X
n2[x]l
Y
16j6k
fj(Lj(n))
as x ! 1, where [x] := [1,x] and L1, . . . ,Lk are affine linear forms that satisfy some natural
conditions. Our approach gives a new proof of a result of Frantzikinakis and Host that is
distinct from theirs, with explicit main and error terms.
As an application of our formulae, we establish a local-to-global principle for Gowers norms
of multiplicative functions. We reveal and explain irregularities in the distribution of the
sign patterns of multiplicative functions by computing the asymptotic densities of the sets
of integers n such that a given multiplicative function f : N ! {−1, 1} yields a fixed sign
pattern of length 3 or 4 on almost all 3- and 4-term arithmetic progressions, respectively,
with first term n. The latter generalizes and refines the work of Buttkewitz and Elsholtz and
complements the recent work of Matomaki, Radziwiłł and Tao.
We conclude this thesis by discussing some work in progress.
|
3 |
Entiers friables et formes binaires / Friable integers and binary formsLachand, Armand 02 December 2014 (has links)
Un entier est dit y-friable si tous ses facteurs premiers n'excèdent pas y. Les valeurs friables de formes binaires interviennent de manière essentielle dans l'algorithme de factorisation du crible algébrique (NFS). Dans cette thèse, nous obtenons des formules asymptotiques pour le nombre de représentations des entiers friables par différentes familles de polynômes. Nous considérons dans la première partie les formes binaires qui se décomposent comme produit d'une forme linéaire et d'une forme quadratique. Nous combinons pour cela le principe d'inclusion-exclusion à des idées issues de travaux sur la distribution multiplicative de certaines suites d'entiers représentés par des formes quadratiques développés par Fouvry et Iwaniec, puis Balog, Blomer, Dartyge et Tenenbaum. Dans un second temps, nous nous concentrons sur les valeurs friables de formes cubiques irréductibles. En adaptant les travaux de Heath-Brown et Moroz sur les nombres premiers représentés par de tels polynômes, nous obtenons des formules asymptotiques valides dans un vaste domaine de friabilité. Notre méthode permet également d'évaluer des moyennes sur les valeurs d'une forme cubique pour d'autres fonctions arithmétiques comprenant en particulier les fonctions de Möbius et de Liouville. Dans le dernier chapitre, nous étudions les corrélations de l'indicatrice des friables avec les nilsuites. En employant la méthode nilpotente de Green et Tao, nous en déduisons une formule pour le nombre de valeurs friables d'un produit de formes affines deux à deux affinement indépendantes / An integer is called y-friable if its largest prime factor does not exceed y. Friable values of binary forms play a central role in the integer factoring algorithm NFS (Number Field Sieve). In this thesis, we obtain some asymptotic formulas for the number of representations of friable integers by various classes of polynomials. In the first part, we focus on binary forms which split as a product of a linear form and a quadratic form. To achieve this, we combine the inclusion-exclusion principle with ideas based on works of Fouvry and Iwaniec and Balog, Blomer, Dartyge and Tenenbaum related to the distribution of some sequences of integers represented by quadratic forms. We then take a closer look at friable values of irreducible cubic forms. Extending some previous works of Heath-Brown and Moroz concerning primes represented by such polynomials, we provide some asymptotic formulas which hold in a large range of friability. With this method, we also evaluate some means over the values of an irreducible cubic form for other multiplicative functions including the Möbius function and the Liouville function. In the last chapter, we investigate the correlations between nilsequences and the characteristic function of friable integers. By using the nilpotent method of Green and Tao, our work provides a formula for the number of friable integers represented by a product of affine forms such that any two forms are affinely independent
|
4 |
Propriétés arithmétiques et combinatoires de la fonction somme des chiffres / Arithmetical and combinatorial properties of the sum of digits functionAloui, Karam 15 December 2014 (has links)
L'objet de cette thèse est l'étude de certaines propriétés arithmétiques et combinatoires de la fonction somme des chiffres. Nous commençons par étudier les sommes d'exponentielles de la forme $dissum_{nleq x}expleft(2ipileft(frac{l}{m}S_q(n)+frac{k}{m'}S_{q}(n+1)+theta nright)right)$ en vue de montrer un résultat d'équirépartition modulo $1$ et un théorème probabiliste d'ErdH{o}s-Kac. Ensuite, on va généraliser un problème dû à Gelfond concernant l'étude de la répartition dans les progressions arithmétiques de la fonction somme des chiffres au cas des nombres ellipséphiques. En particulier, on donne un théorème analogue à celui d'Erdös, Mauduit et S'arközy sur l'uniforme répartition des entiers ellipséphiques dans les progressions arithmétiques sous une contrainte sur la somme des chiffres. Enfin, une étude de l'ordre moyen de certaines fonctions arithmétiques soumises à des contraintes digitales est faite en conséquence des travaux de Mkaouar et Wannès. / The aim of this thesis is the study of some arithmetic and combinatoric properties of the sum of digits function. We start by the study of exponential sums of the form $dissum_{nleq x}expleft(2ipileft(frac{l}{m}S_q(n)+frac{k}{m'}S_q(n+1)+theta nright)right)$ in order to establish a result of equidistribution modulo $1$ in addition to a probabilistic theorem of the kind ErdH{o}s-Kac. Then, we generalize a problem due to Gelfond concerning the distribution in residue classes of the sum of digits function in the case of integers with missing digits. Besides, we give a similar result to that of ErdH{o}s, Mauduit and S'ark"{o}zy on the uniform distribution of integers with missing digits in arithmetic progressions under a constraint on the sum of digits. Finally, a study of the order of magnitude of some arithmetical functions under digital constraints is done as a consequence of the works of Mkaouar and Wannès.
|
5 |
Sur la distribution des valeurs de la fonction zêta de Riemann et des fonctions L au bord de la bande critqueLamzouri, Youness January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
6 |
Sur la distribution des valeurs de la fonction zêta de Riemann et des fonctions L au bord de la bande critqueLamzouri, Youness January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
7 |
On the distribution of polynomials having a given number of irreducible factors over finite fieldsDatta, Arghya 08 1900 (has links)
Soit q ⩾ 2 une puissance première fixe. L’objectif principal de cette thèse est d’étudier le comportement
asymptotique de la fonction arithmétique Π_q(n,k) comptant le nombre de polynômes
moniques de degré n et ayant exactement k facteurs irréductibles (avec multiplicité) sur le corps
fini F_q. Warlimont et Car ont montré que l’objet Π_q(n,k) est approximativement distribué de
Poisson lorsque 1 ⩽ k ⩽ A log n pour une constante A > 0. Plus tard, Hwang a étudié la
fonction Π_q(n,k) pour la gamme complète 1 ⩽ k ⩽ n. Nous allons d’abord démontrer une formule
asymptotique pour Π_q(n,k) en utilisant une technique analytique classique développée
par Sathe et Selberg. Nous reproduirons ensuite une version simplifiée du résultat de Hwang
en utilisant la formule de Sathe-Selberg dans le champ des fonctions. Nous comparons également
nos résultats avec ceux analogues existants dans le cas des entiers, où l’on étudie tous les
nombres naturels jusqu’à x avec exactement k facteurs premiers. En particulier, nous montrons
que le nombre de polynômes moniques croît à un taux étonnamment plus élevé lorsque k est un
peu plus grand que logn que ce que l’on pourrait supposer en examinant le cas des entiers.
Pour présenter le travail ci-dessus, nous commençons d’abord par la théorie analytique des
nombres de base dans le contexte des polynômes. Nous introduisons ensuite les fonctions arithmétiques
clés qui jouent un rôle majeur dans notre thèse et discutons brièvement des résultats
bien connus concernant leur distribution d’un point de vue probabiliste. Enfin, pour comprendre
les résultats clés, nous donnons une discussion assez détaillée sur l’analogue de champ de fonction
de la formule de Sathe-Selberg, un outil récemment développé par Porrit et utilisons ensuite
cet outil pour prouver les résultats revendiqués. / Let q ⩾ 2 be a fixed prime power. The main objective of this thesis is to study the asymptotic
behaviour of the arithmetic function Π_q(n,k) counting the number of monic polynomials that
are of degree n and have exactly k irreducible factors (with multiplicity) over the finite field
F_q. Warlimont and Car showed that the object Π_q(n,k) is approximately Poisson distributed
when 1 ⩽ k ⩽ A log n for some constant A > 0. Later Hwang studied the function Π_q(n,k) for the
full range 1 ⩽ k ⩽ n. We will first prove an asymptotic formula for Π_q(n,k) using a classical
analytic technique developed by Sathe and Selberg. We will then reproduce a simplified version
of Hwang’s result using the Sathe-Selberg formula in the function field. We also compare our
results with the analogous existing ones in the integer case, where one studies all the natural
numbers up to x with exactly k prime factors. In particular, we show that the number of monic
polynomials grows at a surprisingly higher rate when k is a little larger than logn than what one
would speculate from looking at the integer case. To present the above work, we first start with basic analytic number theory in the context of polynomials. We then introduce the key arithmetic functions that play a major role in our thesis and briefly discuss well-known results concerning their distribution from a probabilistic
point of view. Finally, to understand the key results, we give a fairly detailed discussion on the
function field analogue of the Sathe-Selberg formula, a tool recently developed by Porrit and
subsequently use this tool to prove the claimed results.
|
Page generated in 0.0991 seconds