• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sensor modelling for anomaly detection in time series data

JALIL POUR, ZAHRA January 2022 (has links)
Mechanical devices in industriy are equipped with numerous sensors to capture thehealth state of the machines. The reliability of the machine’s health system depends on thequality of sensor data. In order to predict the health state of sensors, abnormal behaviourof sensors must be detected to avoid unnecessary cost.We proposed LSTM autoencoder in which the objective is to reconstruct input time seriesand predict the next time instance based on historical data, and we evaluate anomaliesin multivariate time series via reconstructed error. We also used exponential moving averageas a preprocessing step to smooth the trend of time series to remove high frequencynoise and low frequency deviation in multivariate time series data.Our experiment results, based on different datasets of multivariate time series of gasturbines, demonstrate that the proposed model works well for injected anomalies and realworld data to detect the anomaly. The accuracy of the model under 5 percent infectedanomalies is 98.45%.
2

Waveform clustering - Grouping similar power system events

Eriksson, Therése, Mahmoud Abdelnaeim, Mohamed January 2019 (has links)
Over the last decade, data has become a highly valuable resource. Electrical power grids deal with large quantities of data, and continuously collect this for analytical purposes. Anomalies that occur within this data is important to identify since they could cause nonoptimal performance within the substations, or in worse cases damage to the substations themselves. However, large datasets in the order of millions are hard or even impossible to gain a reasonable overview of the data manually. When collecting data from electrical power grids, predefined triggering criteria are often used to indicate that an event has occurred within the specific system. This makes it difficult to search for events that are unknown to the operator of the deployed acquisition system. Clustering, an unsupervised machine learning method, can be utilised for fault prediction within systems generating large amounts of multivariate time-series data without labels and can group data more efficiently and without the bias of a human operator. A large number of clustering techniques exist, as well as methods for extracting information from the data itself, and identification of these was of utmost importance. This thesis work presents a study of the methods involved in the creation of such a clustering system which is suitable for the specific type of data. The objective of the study was to identify methods that enables finding the underlying structures of the data and cluster the data based on these. The signals were split into multiple frequency sub-bands and from these features could be extracted and evaluated. Using suitable combinations of features the data was clustered with two different clustering algorithms, CLARA and CLARANS, and evaluated with established quality analysis methods. The results indicate that CLARA performed overall best on all the tested feature sets. The formed clusters hold valuable information such as indications of unknown events within the system, and if similar events are clustered together this can assist a human operator further to investigate the importance of the clusters themselves. A further conclusion from the results is that research into the use of more optimised clustering algorithms is necessary so that expansion into larger datasets can be considered.
3

Interaktiv identifiering av avvikelser i mätdata från testning av kretskort

Berglund, Ebba, Kazemi, Baset January 2024 (has links)
Visualisering är ett kraftfullt verktyg vid dataanalys, särskilt för att identifiera avvikelser. Att effektivt kunna identifiera felaktiga komponenter i elektronik kan förbättra och utveckla produktionsprocesserna avsevärd. Genom att tydligt visa korrelationen mellan felaktiga och fungerande komponenter kan analytiker identifiera nyckelkomponenter som orsakar defekta produkter.  Multivariata data och multivariata tidsseriedata ställer höga krav på visualiseringar på grund av deras komplexitet. Den höga dimensionaliteten kan leda till problem som överlappning och dolda mönster beroende på vilken visualiseringsteknik som används. För att uppnå effektiv visualisering av multivariata data och multivariata tidsseriedata krävs det att både trender över tid och korrelationer mellan olika variabler visas. Studien genomfördes i samarbete med konsultföretaget Syntronic AB för att identifiera lämpliga visualiseringstekniker för data som samlats in vid testning av kretskort. Metoden som användes är design science, vilket omfattar en litteraturstudie, utveckling av prototyp och utvärdering av prototypen. Prototypen består av tre visualiseringstekniker som är: Kategorisk heatmap, Parallella koordinater och Scatterplot. Dessa tekniker jämfördes systematiskt för att bedöma deras effektivitet. Utvärderingen består av kvantitativa metoder såsom mätningar och enkäter, samt den kvalitativa metoden intervju. Resultatet av studien presenterar den utvecklade prototypen och analysen av utvärderingen.  Resultatet av studien visar att kategoriska heatmaps är effektiv för att identifiera samband mellan avvikelser i multivariat data. Även om alla användare upplevde visualiseringen svårtolkad vid en första anblick uttryckte de att visualiseringen var effektiv på att visa korrelationer mellan avvikelser. Parallella koordinater upplevdes svårtolkad och ineffektiv på grund av den höga dimensionaliteten där alla dimensioner inte kan visas samtidigt. Förbättringsförslag för att öka användarvänlighet och användarupplevelse lyftes där tree view förslogs som ett alternativ för att välja de dimensioner som ska visas i stället för reglaget. Scatterplots visade sig vara användbar för att analysera enskilda testpunkter och visade generella trender på ett tydligt och begripligt sätt. Studien har även visat att interaktiviteten påverkar upplevelsen av visualisering, där begränsad interaktivitet medför att tekniken upplevds mindre användbar för att identifiera relationer mellan avvikelser. / Visualization is of great importance when analyzing data, especially when distinguishing anomalies. Identifying faulty components of electronics could evolve and improve the production processes tremendously. By effectively displaying the correlation between faulty and working components, analytics can identify key components causing faulty products.Multivariate data and multivariate time series data place high demands on visualizations due to their complexity. The high dimensionality can lead to issues such as overlapping and hidden patterns, depending on the visualization technique used. To achieve effective visualization of multivariate data and multivariate time series data, it is necessary to show both trends over time and correlations between different variables. This study was conducted in cooperation with Syntronic AB, a consulting company, to help identify suitable visualization techniques for data gathered by testing circuit boards. The methodology used is design research which includes research gathering, development of a prototype and evaluation of the prototype. The prototype consists of three visualization techniques: Categorical heatmap, Parallel Coordinates, and Scatterplot. These techniques were systematically compared to assess their effectiveness. The evaluation consists of quantitative methods such as time measurement and survey, and the qualitative method interview. The result of the study shows the developed prototype and the analysis of the evaluation.  As a result, the study found categorical heatmaps effective in distinguishing correlation between anomalies in multivariate data. Although all users found the visualization difficult to grasp at first glance, expressed their beliefs regarding the effectiveness of displaying correlation. Parallel Coordinates were perceived as difficult to interpret and ineffective for high-dimensional datasets where all dimensions can´t be displayed simultaneously. Interactive options such as tree view to select test pointsto visualize were suggested to further improve the usefulness of Parallel Coordinates. Scatterplot proved useful for analyzing individual test points and showed general trends in a user-friendly way. Furthermore, the study also showed that interactivity affect the perception of visualizations. Limited interactivity resulted in users finding the visualizations less effective in distinguishing anomalies and were perceived as less user-friendly.
4

Sign of the Times : Unmasking Deep Learning for Time Series Anomaly Detection / Skyltarna på Tiden : Avslöjande av djupinlärning för detektering av anomalier i tidsserier

Richards Ravi Arputharaj, Daniel January 2023 (has links)
Time series anomaly detection has been a longstanding area of research with applications across various domains. In recent years, there has been a surge of interest in applying deep learning models to this problem domain. This thesis presents a critical examination of the efficacy of deep learning models in comparison to classical approaches for time series anomaly detection. Contrary to the widespread belief in the superiority of deep learning models, our research findings suggest that their performance may be misleading and the progress illusory. Through rigorous experimentation and evaluation, we reveal that classical models outperform deep learning counterparts in various scenarios, challenging the prevailing assumptions. In addition to model performance, our study delves into the intricacies of evaluation metrics commonly employed in time series anomaly detection. We uncover how it inadvertently inflates the performance scores of models, potentially leading to misleading conclusions. By identifying and addressing these issues, our research contributes to providing valuable insights for researchers, practitioners, and decision-makers in the field of time series anomaly detection, encouraging a critical reevaluation of the role of deep learning models and the metrics used to assess their performance. / Tidsperiods avvikelsedetektering har varit ett långvarigt forskningsområde med tillämpningar inom olika områden. Under de senaste åren har det uppstått ett ökat intresse för att tillämpa djupinlärningsmodeller på detta problemområde. Denna avhandling presenterar en kritisk granskning av djupinlärningsmodellers effektivitet jämfört med klassiska metoder för tidsperiods avvikelsedetektering. I motsats till den allmänna övertygelsen om överlägsenheten hos djupinlärningsmodeller tyder våra forskningsresultat på att deras prestanda kan vara vilseledande och framsteg illusoriskt. Genom rigorös experimentell utvärdering avslöjar vi att klassiska modeller överträffar djupinlärningsalternativ i olika scenarier och därmed utmanar de rådande antagandena. Utöver modellprestanda går vår studie in på detaljerna kring utvärderings-metoder som oftast används inom tidsperiods avvikelsedetektering. Vi avslöjar hur dessa oavsiktligt överdriver modellernas prestandapoäng och kan därmed leda till vilseledande slutsatser. Genom att identifiera och åtgärda dessa problem bidrar vår forskning till att erbjuda värdefulla insikter för forskare, praktiker och beslutsfattare inom området tidsperiods avvikelsedetektering, och uppmanar till en kritisk omvärdering av djupinlärningsmodellers roll och de metoder som används för att bedöma deras prestanda.

Page generated in 0.0882 seconds