• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • Tagged with
  • 16
  • 16
  • 16
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electrochemical performance of metal oxide dooped multiwalled carbon nanotubes

Mkhondo, N. B. January 2015 (has links)
Thesis (M.Sc. (Chemistry)) -- University of Limpopo, 2015 / The study has focused on the effects of different acids treatments on the nanostructure of MWCNTs; doping metal oxides (copper oxide (CuO), Iron (III) oxide (Fe2O3), nickel oxide (NiO) and cobalt oxide (Co3O4)) on MWCNTs and investigates their electrochemical hydrogen and energy storage capabilities. Fourier transform infrared (FTIR) confirmed the formation of functional groups on the surface of the acid treated MWCNTs. X-ray diffraction (XRD) showed that the graphitic structure of the MWCNTs was retained after treatment with mild acids (nitric acid (HNO3), hydrogen peroxide (H2O2), a mixture of the acids, hydrogen peroxide: nitric acid (H2O2:HNO3) and hydrogen peroxide: sulfuric acid (H2O2:H2SO4)). Transmission electron microscopy (TEM) confirms the removal of bamboo carbon structures inside the inner tubes of the MWCNTs after treatment with mild acids. Brunauer-Emmet- Teller (BET) showed an increase in the surface area of mild acids treated MWCNTs. Thermogravimetric analysis (TGA) results demonstrated that the thermal stability of MWCNTs increases after treatment with mixtures of the acids. Different metal oxides treated at different temperatures were incorporated into MWCNTs (treated by a mixture of H2O2:HNO3). X-ray diffraction (XRD), scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) confirmed the presence of different metal oxides inside/on the surface of the acid treated MWCNTs. The MWCNTs treated by H2O2:HNO3 gave both the highest discharge capacity (72.63 mAh/g) and capacitance (8.61 F/g), as compared to the other electrode materials. The improved hydrogen storage capacity and specific capacitance can be attributed to high surface area, wider pore size distribution and the amount of functional groups on the surface of H2O2:HNO3-treated MWCNTs; with the functional groups acting as electron transmitters. The 5wt.% CuO@300oC-MWCNTs composite showed the highest hydrogen storage capacity of 159 mAh/g. This capacity was further improved by addition of manganese oxide resulting in the highest discharge capacity of 172 mAh/g (which is equivalent to 0.64 wt.% of hydrogen stored). The highest specific capacitance of 9.70 F/g was obtained on 5wt% Fe2O3@400oCMWCNTs composite.
12

Electron Filed Emission Studies of Nanostructured Carbon Materials

Ivaturi, Sameera January 2012 (has links) (PDF)
Field emission is the emission of electrons from a solid under an intense electric field, of the order of 109 V/m. Emission occurs by the quantum mechanical tunneling of electrons through a potential barrier to vacuum. Field emission sources offer several attractive features such as instantaneous response to field variation, resistance to temperature fluctuation and radiation, a high degree of focusing ability in electron optics, good on/off ratio, ballistic transport, and a nonlinear current-voltage relationship. Carbon nanotubes (CNTs) are potential candidates as field emitters since they possess high aspect ratio and are chemically inert to poisoning, and physically inert to sputtering during field emission. They can carry a very high current density and do not suffer field-induced tip sharpening like metallic tips. In addition, the CNT field emitters have the advantage of charge transport through 1D channels and electron emission at the sharp tips due to large enhancement. But the injection of electrons from the back contact remains a technical challenge which requires binding of CNT emitters to metallic substrate. Also, detachment of the CNT from the substrate tends to occur with time. The electrically conducting mixtures of CNTs and polymer can provide an alternative route to address these issues in the field emission of CNTs. The composites can be casted on any substrate in desired shape and the polymer matrix provides necessary support. The research work reported in this thesis includes the preparation of high quality multiwall carbon nanotubes (MWCNTs), MWCNT-polystyrene (PS) composites, and experimental investigation on field emission properties of MWCNT¬PS composites in two different configurations. Electrical conductivity and percolation threshold of the MWCNT-PS composites are also investigated to ensure their high quality prior to the field emission studies. The study has been further extended to reduced graphene oxide (rGO) coated on polymer substrate. The main results obtained in present work are briefly summarized below. This thesis contains eight chapters. Chapter 1 provides an overview of basics of field emission, and the potential of CNT and CNT-polymer composites as field emitters. Chapter 2 deals with the concise introduction of various structural characterization tools and experimental techniques employed in this study. Chapter 3 describes the synthesis of MWCNTs and characterization by using electron microscopy and Raman spectroscopy. MWCNTs are synthesized by chemical vapor deposition (CVD) of toluene [(C6H5) CH3] and ferrocene [(C5H5)2 Fe] mixture at 980 °C. Here toluene acts as carbon source material and ferrocene provides catalytic iron (Fe) particles. The MWCNT formation is based on the thermal decomposition of the precursor mixture. Scanning electron microscopy (SEM) characterization shows that the MWCNTs are closely packed and quite aligned in one direction. The average length of MWCNTs is about 200 μm and outer diameter lies in the range of 50-80 nm. The high quality of as-prepared MWCNT sample is confirmed by Raman spectroscopy. The as-grown MWCNTs are encapsulated with catalytic Fe nanoparticles, revealed by transmission electron microscopy. The Fe nanoparticles trapped within the MWCNT serve as fantastic system for studying the magnetic properties. Three types of MWCNT samples filled with Fe nanoparticles of different aspect ratio (~10, 5 and 2) are synthesized by varying the amount of ferrocene in the precursor material, and their magnetic properties are investigated. Enhanced values of coercivity (Hc) are observed for all samples, Hc being maximum (~2.6 kOe) at 10 K. The enhancement in Hc values is attributed to the strong shape anisotropy of Fe nanoparticles and significant dipolar interactions between Fe nanoparticles. Chapter 4 deals with the field emission studies of MWCNT-PS composites in the parallel configuration. By incorporating as-prepared MWCNTs in PS matrix in a specific ratio, composites with varying loading from 0.01-0.45 weight (wt.) fraction are prepared using solution mixing and casting. High degree of dispersion of MWCNTs in PS matrix without employing any surfactant is achieved by ultrasonication. Low percolation threshold (~0.0025 wt. fraction) in the MWCNT-PS composites ensures the good connectivity of filler in the fabricated samples. Field emission of MWCNT¬PS composites is studied in two different configurations: along the top surface of the film (parallel configuration) and along the cross section of the sample (perpendicular configuration). In this chapter field emission results of the MWCNT-PS composites in parallel configuration are presented. The effect of charge transport in limiting the field emission of MWCNT-PS composite is discussed. Field emission results of MWCNT-PS composites in parallel configuration indicate that the emission performance can be maximized at moderate wt. fraction of MWCNT (0.15). The obtained current densities are ~10 µA/cm2 in the parallel configuration. Chapter 5 presents the study of field emission characteristics of MWCNT¬PS composites of various wt. fractions in the perpendicular configuration. Till date most studies using nanotube composites tend to have the nanotubes lying in two dimensional plane, perpendicular to the applied electric field. In the perpendicular configuration, the nanotubes are nearly aligned parallel to the direction of the applied electric field which results in high field enhancement, and electron emission at lower applied fields. SEM micrographs in cross-sectional view reveal that MWCNTs are homogeneously distributed across the thickness and the density of protruding tubes can be scaled with wt. fraction of the composite film. Field emission from composites has been observed to vary considerably with density of MWCNTs in the polymer matrix. High emission current density of 100 mA/cm2 is achieved at a field of 2.2 V/µm for 0.15 wt. fraction. The field emission is observed to follow the Fowler– Nordheim tunneling mechanism, however, electrostatic screening plays a role in limiting the current density at higher wt. fractions. Chapter 6 highlights the field emission response of rGO coated on a flexible PS film. Field emission of rGO coated PS film along the cross section of the sample is studied in addition to the top film surface of the film. The effect of geometry on the improved field emission efficiency of rGO coated polymer film is demonstrated. The emission characteristics are analyzed by Fowler–Nordheim tunneling for field emission. Low turn-on field (~0.6 V/µm) and high emission current (~200 mA/cm2) in the perpendicular configuration ensure that rGO can be a potential field emitter. Furthermore, stability and repeatability of the field emission characteristics are also presented. Chapter 7 deals with the synthesis, characterization, and field emission of two different kinds of hybrid materials: (1) MWCNT coated with zinc oxide (ZnO) nanoparticles (2) ZnO/graphitic carbon (g-C) core-shell nanowires. The field emission from the bucky paper is improved by anchoring ZnO nanoparticles on the surface of MWCNT. A shift in turn on field from 3.5 V/µm (bucky paper) to 1.0 V/µm is observed by increasing the ZnO nanoparticle loading on the surface of MWCNT with an increase in enhancement factor from 1921 to 4894. Field emission properties of a new type of field emitter ZnO/g-C core-shell nanowires are also presented in this chapter. ZnO/g-C core/shell nanowires are synthesized by CVD of zinc acetate at 1300 °C. Overcoming the problems of ZnO nanowire field emitters, which in general possess high turn on fields and low current densities, the core-shell nanowires exhibit excellent field emission performance with low turn on field of 2.75 V/µm and high current density of 1 mA/cm2. Chapter 8 presents a brief summary of the important results and future perspectives of the work reported in the thesis.
13

Interfacial and Mechanical Properties of Carbon Nanotubes: A Force Spectroscopy Study

Poggi, Mark Andrew 22 September 2004 (has links)
Next generation polymer composites that utilize the high electrical conductivity and tensile strength of carbon nanotubes are of interest. To effectively disperse carbon nanotubes into polymers, a more fundamental understanding of the polymer/nanotube interface is needed. This requires the development of new analytical methods and techniques for measuring the adhesion between a single molecule and the sidewalls of carbon nanotubes. Atomic Force Microscopy is an integral tool in the characterization of materials on the nanoscale. The objectives of this research were to: 1) characterize the binding force between single molecules and the backbone of a single walled carbon nanotube (SWNT), and 2) measure and interpret the mechanical response of carbon-based nano-objects to compressive loads using an atomic force microscope. To identify chemical moieties that bind strongly to the sidewall of the nanotubes, two experimental approaches have been explored. In the first, force volume images of SWNT paper were obtained using gold-coated AFM tips functionalized with terminally substituted alkanethiols and para-substituted arylthiols. Analysis of these images enabled quantification of the adhesive interactions between the functionalized tip and the SWNT surface. The resultant adhesive forces were shown to be dependent upon surface topography, tip shape, and the terminal group on the alkanethiol. The mechanical response of several single- and multi-walled carbon nanotubes under compressive load was examined with an AFM. When the scanner, onto which the substrate has been mounted, was extended and retracted in a cyclic fashion, cantilever deflection, oscillation amplitude and resonant frequency were simultaneously monitored. By time-correlating cantilever resonance spectra, deflection and scanner motion, precise control over the length of nanotube in contact with the substrate, analogous to fly-fishing was achieved. This multi-parameter force spectroscopy method is applicable for testing the mechanical and interfacial properties of a wide range of nanoscale objects. This research has led to a clearer understanding of the chemistry at the nanotube/polymer interface, as well as the mechanical response of nanoscale materials. A new force spectroscopic tool, multi-parameter force spectroscopy, should be extremely helpful in characterizing the mechanical response of a myriad of nanoscale objects and enable nanoscale devices to become a reality.
14

EMI Shielding Materials Derived from PC/SAN Blends Containing Engineered Nanoparticles

Pawar, Shital Patangrao January 2016 (has links) (PDF)
In recent years, increased use of electronic devices and wireless operations resulted in unavoidable electromagnetic (EM) pollution which has a significant impact on civil and military sectors. Considering the foremost requirement, huge efforts were invested in the development of electromagnetic interference (EMI) shielding materials. In this context, metals are usually preferred but design complexities like high density and susceptibility towards corrosion are limiting factors; additionally, the reflection of microwaves from the surface fails to serve as EM absorbers. The concern here is to minimize the reflection of the high frequency electromagnetic wave from the surface and to enhance the microwave absorption in GHz frequencies. In this thesis, we have made an attempt to design EMI shielding materials with exceptional absorption ability derived from Polycarbonate (PC)/ Poly styrene-co-acrylonitrile (SAN) based polymer blends. Herein, unique co-continuous micro-phase separated blend structures with selective localization of microwave active nanoparticles in one of the phases were realized to be most effective for microwave attenuation over just dispersing it in one polymer matrix (i.e. PC and SAN composites). The synergistic attenuation of electric and magnetic field associated with EM radiation was achieved through incorporation of various magnetic nanoparticles, however, dispersion of magnetic nanoparticles was a challenging task. Therefore, in order to localize magnetic nanoparticles in PC phase of the blends and to enhance the dispersion state, various modification strategies have been designed. In summary, we have developed a library of engineered nanoparticles to achieve synergistic attenuation of EM radiation mostly through absorption. For instance, the PC/SAN blends containing MWNTs and rGO-Fe3O4 nanoparticles manifested in exceptional EMI shielding, well above required shielding effectiveness value for most of the commercial applications, essentially through absorption. Taken together, the finding suggests that immiscible blends containing MWNTs and the decoration of magnetic nanoparticles (rGO-Fe3O4) on the surface of reduced graphene oxide sheets can be utilized to engineer high-performance EMI shielding materials with exceptional absorption ability.
15

Studies on the Effects of Carbon Nanotubes on Mechanical Properties of Bisphenol E Cyanate Ester/Epoxy Based Resin Systems and CFRP Composites

Subba Rao, P January 2016 (has links) (PDF)
The search and research for high performance materials for aerospace applications is a continuous evolving process. Among several fibre reinforced polymers, carbon fibre reinforced polymer (CFRP) is well known for its high specific stiffness and strength. Though high modulus and high strength carbon fibre with structural resin systems have currently been established reasonably well and are catering to a wide variety of aerospace structural applications, these properties are generally directional with very high properties along the fibre direction dominated by fibres and low in other directions depending mainly on the resin properties. Thus, there is a need to enhance the mechanical properties of the resin systems for better load transfer and to improve the resin dominated properties like shear strength and properties in directions other than along the fibre. Use of carbon nanotubes (CNTs) with their extraordinary specific stiffness and strength apparently has great potential as an additional reinforcement in resin for development of CNT-CFRP nanocomposites. However, there are several issues that need to be addressed such as compatibility of a particular resin with CNTs, amount of CNTs that can be added, uniform dispersion of these nanotubes, surface treatment and curing process etc., for optimal enhancement of the required properties. Epoxy and cyanate ester resin systems are finding applications in aerospace structures owing to their desirable set of properties. Of these, bisphenol E cyanate ester (BECy) resin of low viscosity with its low moisture absorption, better dimensional stability, and superior mechanical properties can establish itself as potential structural resin system for these applications. BECy in particular has the advantage of being more suitable for out of autoclave manufacturing process such as Vacuum Assisted Resin Transfer Molding (VARTM). Literature shows that, significant work has been carried out by various researchers reporting improvements using CNTs in epoxy resins along with various associated problems. However, studies on effects of addition of CNTs /fCNTs to BECy-CFRP composite system are not well reported. Thus, objective of this work is to study the effects of adding pristine and functionalized CNTs to low viscosity cyanate ester as well as epoxy resin systems. Further, to study the effects on mechanical properties of nanocomposites with carbon fibre reinforcement in these CNT dispersed resin system through a combination of experimental and computational approaches. Multiwall carbon nanotubes (CNTs) without and with different chemical functionalization are chosen to be added to epoxy and BECy resins. The quantity of these CNTs /fCNTs is varied in steps up to 1% by weight. Different methods of mixing such as shear mixing, ultrasonication and combined mixing cycles are implemented to achieve uniform dispersion of these nanotubes in the resin system. Standard test samples are prepared from these mixtures of nanotubes in resin systems to study the variation in mechanical properties. Further, these nanotubes added resin systems are used in fabricating CFRP laminates by VARTM process. Both uni-directional and bi-directional laminates are made with the above modified resin systems with CNTs/fCNTs. Series of experimental investigations are carried out to study various aspects involved in making of nanocomposites and the effects of the same on different mechanical properties of the nanocomposites. Standard specimens are cut out from these laminates to evaluate them for tension, compression, flexure, shear and interlaminar shear strength. The main parameters investigated are the effects of varied quantity of CNTs and functionalized CNTs in the resin mix and in CFRP nanocomposites, effect of different mixing / curing cycles etc. on the mechanical properties of the nanocomposites. The investigations have yielded very interesting and encouraging results to arrive at optimum quantity of CNTs to be added and also the effects of functionalization to achieve enhanced mechanical properties. In addition, correlation of mechanical property enhancements with failure mechanisms, dispersion behaviour and participation of CNTs / fCNTs in load transfer are explained with the aid of scanning electron microscope images. Computational studies are carried out through atomistic models using computational tools to estimate the mechanical properties, understand and validate the effects of various parameters studied through series of experimental investigations. An atomistic model is built taking into consideration the nanoscale effects of the single wall carbon nanotubes (SWCNTs) and its reinforcement in the BECy resin. Using these atomistic models, mechanical properties of individual SWCNT, BECy polymer resin, polymer with different quantities of added SWCNT, and the CFRP laminates with improved resin are computed. As the interaction of CNT with the polymer is only at the outermost layer and the mechanical properties of either MWCNTs or SWCNTs are too high compared to resin systems, it is not expected to have any difference in the final outcome whether it is MWCNT or SWCNT. Hence, only SWCNTs are considered in computational studies as it helps in reducing the complexity of atomistic models and computational time when coupled with polymer resin. This is valid even for functionalized CNT as functionalization is also a surface phenomenon. To start with, the mechanical behaviour of SWCNT is studied using molecular mechanics approach. Molecular mechanics based finite element analysis is adopted to evaluate the mechanical properties of armchair, zigzag and chiral SWCNT of different diameters. Three different types of atomic bonds, i.e., carbon-carbon covalent bond and two types of carbon-carbon van der Waals bonds are considered in the carbon nanotube system. The stiffness values of these bonds are calculated using the molecular potentials, namely Morse potential function and Lennard-Jones interaction potential function respectively and these stiffness values are assigned to spring elements in the finite element model of the SWCNT. The importance of inclusion of Lennard-Jones interactions is highlighted in this study. Effect of these non-bonded interactions is studied by making the numerical stiffness of these bonds to negligible levels and found that they significantly reduce the mechanical properties. The effect of non-bonded Lennard-Jones atomic interactions (van der Waal interactions) considered here is a novelty in this work which has not been considered in previous research works. The finite element model of the SWCNT is constructed, appropriate boundary conditions are applied and the behaviour of mechanical properties of SWCNT is studied. It is found that the longitudinal tensile strength and maximum tensile strain of armchair SWCNTs is greater than that of zigzag and chiral SWCNTs and its value increases with increasing SWCNT diameter. The estimated values of the mechanical properties obtained agree well with the published literature data determined using other techniques. As the systems become more complicated with the inclusion of polymers, molecular dynamics (MD) method using well established codes is more adoptable to study the effect of SWCNTs on BECy. Hence, it is used to model and solve the nanosystems to generate their stress-strain behavior. Further, MD approach followed here can effectively include interfacial interaction between polymer and the CNTs as well. Mechanical properties of SWCNT functionalized SWCNT (fSWCNT), pure BECy resin and that of the CNT nanocomposite consisting of specific quantity of SWCNT / fSWCNT in BECy are estimated using MD method. Atomistic models of SWCNT, fSWCNT, BECy, BECy with specific quantities of CNT / fSWCNT are constructed. A monomer of BECy is modelled and stabilized before its usage as a building block for modelling of BECy resin and to compute its properties. A cell of specific size containing monomers of BECy and another cell of same size with SWCNT at centre surrounded by BECy monomer molecules are built. The appropriate quantity of SWCNT in resin is modelled. This model captures the required density of the composite resin. The models so constructed are subjected to geometric optimization satisfying the convergence criteria and equilibrated through molecular dynamics to obtain a stable structure. The minimized structure is subjected to small strain in different directions to calculate the Young’s modulus and other moduli of the CNT-BECy resin composite. The process is repeated for different quantities of SWCNT in BECy resin to obtain their moduli. Further, tensile and shear strengths of CNT-BECy are obtained by subjecting the equilibrated structure to a series of applied strains from 0 to 10% in steps of 1%. The stress values corresponding to each strain are obtained and a stress – strain curve is plotted. From the stress- strain curve, the strengths of the CNT -BECy which is the stress corresponding to the modulus after which the material starts to soften are determined. Effects of functionalization on mechanical properties of SWCNT are observed. Further, effects of functionalization of SWCNT are studied with a specific quantity of fSWCNT on different moduli and strengths of BECy are investigated. The properties of enhanced CNT–BECy nanocomposite resin with different quantities of added CNT obtained through MD are used to estimate the mechanical properties of the CNT-BECy-CFRP nanocomposite using micromechanics model. Further, validation with experimental results is attempted comparing the trends in enhancement of properties of the CNT-BECy resin and CNT-BECy-CFRP nanocomposite system. The outcome of this research work has been significantly positive in terms of i) Development of an appropriate process establishing different parameters for dispersing CNTs in the resin system, mixing, curing cycle for making of nanocomposites demonstrating significant and consistent enhancement of mechanical properties of BECy based resin system and CFRP nanocomposites using optimum quantity of CNTs /fCNTs through a series of well planned and executed experimental investigations. Evaluation of mechanical properties for each of the cases has been carried out experimentally. ii) Establishing a computational methodology involving intricate atomistic modelling and molecular dynamics of nanosystems for estimation of mechanical properties of BECy polymer resin and to study the effects by addition of SWCNT / functionalized SWCNT on the properties. Results obtained through series of experimental investigations have been validated through this computational study. This could be an important step towards realising the potential of this resin system for high performance aerospace applications. Thus, in brief, detailed experimental work combined with computational studies performed as presented in this thesis resulted in achieving structurally efficient cyanate ester based nanocomposites which is unique and not reported in open literature.
16

Enhanced 3-Dimensional Carbon Nanotube Based Anodes for Li-ion Battery Applications

Kang, Chi Won 28 June 2013 (has links)
A prototype 3-dimensional (3D) anode, based on multiwall carbon nanotubes (MWCNTs), for Li-ion batteries (LIBs), with potential use in Electric Vehicles (EVs) was investigated. The unique 3D design of the anode allowed much higher areal mass density of MWCNTs as active materials, resulting in more amount of Li+ ion intake, compared to that of a conventional 2D counterpart. Furthermore, 3D amorphous Si/MWCNTs hybrid structure offered enhancement in electrochemical response (specific capacity 549 mAhg-1). Also, an anode stack was fabricated to further increase the areal or volumetric mass density of MWCNTs. An areal mass density of the anode stack 34.9 mg/cm2 was attained, which is 1,342% higher than the value for a single layer 2.6 mg/cm2. Furthermore, the binder-assisted and hot-pressed anode stack yielded the average reversible, stable gravimetric and volumetric specific capacities of 213 mAhg-1 and 265 mAh/cm3, respectively (at 0.5C). Moreover, a large-scale patterned novel flexible 3D MWCNTs-graphene-polyethylene terephthalate (PET) anode structure was prepared. It generated a reversible specific capacity of 153 mAhg-1 at 0.17C and cycling stability of 130 mAhg-1 up to 50 cycles at 1.7C.

Page generated in 0.0626 seconds