Spelling suggestions: "subject:"npropilpiridínio silsesquioxane"" "subject:"npropilpiridínio silsesquioxanes""
1 |
DIFERENTES ESTRATÉGIAS DE PREPARAÇÃO DE ELETRODOS A BASE DE SAM PARA O DESENVOLVIMENTO DE BIOSSENSORES ELETROQUÍMICOSMossanha, Rosana 23 February 2016 (has links)
Made available in DSpace on 2017-07-20T12:40:18Z (GMT). No. of bitstreams: 1
Rosana M.pdf: 3183755 bytes, checksum: ceaa632c444d6daec2678d0f7fe428db (MD5)
Previous issue date: 2016-02-23 / This thesis describes the use of self-assembled monolayers (SAM) for the development of biosensors based on horseradish peroxidase enzyme - HRP. In the first chapter, the enzyme was immobilized on self-assembled monolayers of thiolactic acid (Au-TLA) and mixed SAM composed of 11-mercaptoundecanoic acid (MUA) together with the TLA (SAMmix). The steps of construction and characterization of biosensors have been carried out by electrochemical techniques and morphological ones. The enzyme immobilization method on SAM which provided higher stability was by covalent bond. The Au/TLA/HRP biosensor was used for the determination of H2O2 by chronoamperometry, yielding a detection limit (DL) of 5.46 μmol L-1 and quantification (QL) of 18 μmol L-1. Despite the good results for the H2O2 detection presented by this biosensor, the device was stable for only 6 days. Therefore, in order to increase the stability of the biosensor, SAM containing both the mercaptoundecanoic acid molecule (MUA) and TLA was obtained, to the formation of SAMmix (Au/MUA:TLA). In this system, the electron transfer rate can be considerably affected because while the TLA enables an increase of SAMmix conductivity due to formation of “islands”, the MUA provides greater stability for HRP immobilization, although it partially blocks the surface. The biosensor Au-SAMmix-HRP prepared in the ratio 0.5: 1.0 MUA/TLA showed higher sensitivity compared to other modifications ratio, with an apparent Michaelis-Menten constant = 0.40 mmol L-1. This biosensor has been applied to the determination of hydroquinone (HQ) in the presence of a fixed amount of [H2O2] = 0.3 mmol L-1. By differential pulse voltammetry technique (DPV), the biosensor exhibited excellent electrocatalytic activity for HQ in the range 3-30 μmol L-1, with good sensitivity, DL = 1.26 μmol L-1 and QL = 4.23 μmol L -1. The SAMmix increased the stability of the biosensor for at least 15 days, which is more stable when compared to the biosensor Au/TLA/HRP. In the second chapter of this thesis, another strategy was used for immobilization of the HRP enzyme based on the formation of TLA monolayer on the top of gold nanoparticles (AuNPs) stabilized in the inorganic polymer, 3-n-propylpyridinium silsesquioxane chloride (SiPy+Cl-). The presence of AuNPs-SiPy+Cl- was confirmed by UV-Vis spectroscopy from the plasmon band at 521 nm. The AuNps showed good distribution with approximate size between 4-18 nm, evidenced by transmission electron microscopy (TEM) and by dynamic light scattering (DLS), with good stability (ζ = + 38.5 mV). The AuNPs were deposited on the glassy carbon electrode (GCE) and modified with the TLA for immobilization of HRP enzyme. The formation of this biosensor was confirmed by electrochemical impedance spectroscopy (EIS) and morphologically by field-effect scanning electron microscopy (SEM-FEG). The GCE/AuNPs/TLA/HRP biosensor was used for the detection of H2O2 with = 0.46 mmol L-1, which was similar to the Au-SAMmix-HRP biosensor. This biosensor has been applied to the determination of catechol (CT) in presence of [H2O2] = 0.03 mmol L-1. Using the DPV technique, the biosensor showed an excellent electrocatalytic activity for CT in the range 6-46 μmol L-1, with good sensitivity, DL = 0.852 μmol L-1 and QL = 2.84 μmol L -1. The stability of this device was approximately 25 days, being superior to other biosensors developed (TLA-HRP and SAMmix-HRP), which can be attributed to the three-dimensional immobilization of HRP molecules in this device. / Esta tese descreve a utilização das monocamadas auto-organizadas (SAM) para o desenvolvimento de biossensores enzimáticos a base da enzima horseradish peroxidase – HRP. No primeiro capítulo, diferentes biossensores foram desenvolvidos utilizando a SAM de ácido tioláctico (Au/TLA) e também a SAM mista composta por ácido 11-mercaptoundecanóico (MUA) juntamente com o TLA (SAMmista). As etapas de construção e caracterização dos biossensores foram realizadas pelas técnicas eletroquímicas e também morfológicas. O método de imobilização da enzima sobre a SAM que proporcionou maior estabilidade foi pela ligação covalente. O biossensor Au/TLA/HRP foi utilizado para a detecção do H2O2 por cronoamperometria, obtendo-se um limite de detecção (LD) de 5,46 μmol L-1 e de quantificação (LQ) de 18 μmol L-1. Apesar dos bons resultados na detecção do H2O2 apresentados por este biossensor, o dispositivo foi estável por apenas 6 dias. Portanto, no intuito de aumentar a estabilidade do biossensor utilizou a molécula de ácido mercaptoundecanóico (MUA) juntamente com TLA, para a formação da SAMmista (Au/MUA:TLA). Neste sistema, a velocidade de transferência eletrônica é sensivelmente afetada, pois enquanto o TLA possibilita o aumento da condutividade da SAMmista devido a formação de “ilhas”, o MUA confere maior estabilidade à monocamada para a imobilização da enzima HRP, apesar de bloquear parcialmente a superfície. O biossensor Au/SAMmista/HRP preparado na razão 0,5:1,0 MUA:TLA apresentou a melhor sensibilidade em comparação as outras modificações, com uma constante de Michaelis-Menten aparente, = 0,40 mmol L-1. Este biossensor foi aplicado na detecção da hidroquinona (HQ) na presença de uma quantidade fixa de [H2O2] = 0,3 mmol L-1. Pela técnica de voltametria de pulso diferencial (VPD), o biossensor exibiu uma excelente atividade eletrocatalítica para HQ na faixa de 3 a 30 μmol L-1, com boa sensibilidade, LD = 1,26 μmol L-1 e o LQ = 4,23 μmol L-1. A SAMmista aumentou a estabilidade do biossensor para 15 dias, sendo este mais estável quando comparado ao biossensor Au/TLA/HRP. No segundo capítulo da tese, outra estratégia para a imobilização da enzima HRP sobre o TLA foi realizada a partir de nanopartículas de ouro (AuNps) estabilizadas no cloreto de 3-n-propilpiridínio silsesquioxano (SiPy+Cl-). A presença das AuNps-SiPy+Cl- foi confirmada pela Espectroscopia UV-Vis a partir da banda plasmon em 521 nm, as quais apresentaram boa distribuição com tamanho aproximado entre 4 a 18 nm, constatado pela microscopia eletrônica de transmissão (MET) e por espalhamento dinâmico de luz (DLS), apresentando boa estabilidade (ζ = + 38,5 mV). As AuNps foram incorporadas sobre o eletrodo de carbono vítreo (ECV) e modificadas com o TLA para imobilização da enzima HRP. A formação deste biossensor foi comprovada pela espectroscopia de impedância eletroquímica (EIE) e morfologicamente pela microscopia de varredura de efeito de campo (MEV-FEG). O biossensor ECV/AuNps/TLA/HRP foi utilizado na detecção do H2O2 com = 0,43 mmol L-1, sendo próxima ao biossensor Au-SAMmista-HRP. Este biossensor foi aplicado na detecção do catecol (CT) na presença de [H2O2] = 0,03 mmol L-1. Pela técnica de VPD, o biossensor exibiu uma excelente atividade eletrocatalítica para CT na faixa de 6 a 46 μmol L-1, com boa sensibilidade, LD = 0,852 μmol L-1 e o LQ = 2,84 μmol L-1. A estabilidade deste dispositivo é de 25 dias, sendo superior aos outros biossensores desenvolvidos (TLA/HRP e SAMmista/HRP) devido a imobilização ocorrer tridimensionalmente aumentando a quantidade de moléculas da TLA e HRP no dispositivo.
|
2 |
PREPARAÇÃO E CARACTERIZAÇÃO DE FILMES LbL DE FTALOCIANINA DE NÍQUEL E POLIELETRÓLITO SILSESQUIOXANOSantos, Cleverson Siqueira 13 March 2012 (has links)
Made available in DSpace on 2017-07-24T19:38:07Z (GMT). No. of bitstreams: 1
Cleverson S Santos.pdf: 2872449 bytes, checksum: 6d5838a843155793c2eb115ea3d233c4 (MD5)
Previous issue date: 2012-03-13 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / The research focused on the development of electrochemical sensors based on LBL films have grown exponentially in recent years. In this context, this paper reports the development
of an electrochemical sensor using the Layer-by-layer (LbL) technique, which enables the construction of ultrathin films from electrostatic interactions between oppositely charged
polyelectrolytes. For this purpose, the tetrasulfonated nickel phthalocyanine (NiTsPc) was used as polyanion molecule and the 3-n-propilpyridinium silsesquioxane chloride (SiPy+Cl-)
as the polycation. This silsesquioxane polyelectrolyte is an excellent ion exchange and has high ability to form stable films on the surface of solid substrates. The LbL films were built using two different architectures: one with an outer layer of phthalocyanine designated as (SiPy+Cl-/NiTsPc)n and another with the phthalocyanine as the inner layer, (NiTsPc/SiPy+Cl-)n with different bilayers, (where n = number of bilayers). The deposition of the bilayers was monitored using the UV-VIS spectroscopy in the region from 500 to 800 nm, where the phthalocyanines exhibit two absorption bands, one related to the dimeric species at 630 nm and another at 669 nm related to monomeric form. It was observed that the parameters:immersion time, pH and concentration directly influenced the construction of these films and therefore they were optimized. The optimized parameters were: immersion time of 280 s, pH = 8 and concentrations of polyeletrolytes solutions of 2 mg mL-1, which provided stable and
homogeneous films, with higher concentrations of monomeric species. Monitoring the bilayers deposition in the UV-VIS region, a linear relationship was obtained between the
absorbance and the number of bilayers deposited. FTIR and Raman spectra showed that the interactions between the polyelectrolytes occurs by the SO3 groups in the structure of tetrasulfonated phthalocyanines with the pyridinium groups present in the structure of the SiPy+Cl-. Using the AFM technique, it was observed that the average roughness of the films decreased with the increase of bilayers. On the other hand, the thickness of the films increased with the number of bilayers, and the average thickness of each bilayer was 22 nm
for the architecture (SiPy+Cl-/NiTsPc)n, and 19.2 nm for the opposite configuration. The electrodes were applied for simultaneous determination of dopamine (DA) in the presence of the interfering species, such as ascorbic acid (AA) and uric (UA). It was observed that the architecture as well as the thickness of the films has influenced significantly the
electrochemical response in the presence of analytes. The film with the highest current density and less positive potential values for these analytes was (SiPy+Cl-/NiTsPc)2. For this electrode, f om the cyclic voltammetry technique, anodic peaks were observed at 0.30 V,0.68 V and 0.74 V in the presence of DA, AA and UA, respectively. Studies in different scan rates in presence of dopamine showed that the kinetics of electron transfer is controlled by diffusion of species to the electrode surface. Using the square wave voltammetry, DA was detected in presence of AA with a peak separation potential of 350 mV. However, for a fixed
concentration of DA, it was observed an increase of the intensity of peak current with increasing of AA concentration, which is an indication that the AA electrocatalyzes the
oxidation reaction of DA to dopaminequinone, causing an increase in the current, which prevents the accurate determination of these analytes simultaneously. On the other hand, in the presence of UA in a fixed concentration of 4.7 x 10-4 mol L-1, it was possible to quantify DA in the range of 1.0 x 10-5 to 9.9 x 10-5 mol L-1 with a detection limit of 2.37 x 10-6 mol L-1 and quantification limit of 7.9 x 10-6 mol L-1 with peak separation Ep= 500 mV. By varying both the concentration of DA and UA, in the range of 1.0 x 10-4 to 9.0 x 10-4 mol L-1 for DA and 1.0 x 10-5 to 9.9 x 10-5 mol L-1 for UA, it was obtained a correlation coefficient of R =
0.997 and R = 0.988 for AU and DA respectively. The results showed that the electrode (SiPy+Cl-/NiTsPc)2 is selective and sensitive for DA determination in presence of interfering
species AA and UA. / As pesquisas voltadas para o desenvolvimento de sensores eletroquímicos a base de filmes LbL têm crescido exponencialmente nos últimos anos. Neste âmbito, este trabalho relata o desenvolvimento de um sensor eletroquímico, utilizando a técnica Layer-by-Layer (LbL), a qual possibilita a construção de filmes ultrafinos a partir de interações eletrostáticas entre polieletrólitos de cargas opostas. Para tanto foi utilizado como poliânion a molécula ftalocianina tetrassulfonada de níquel (NiTsPc), e como policátion o cloreto de 3-npropilpiridínio silsesquioxano (SiPy+Cl-). Tal composto constitui um excelente trocador iônico, além de apresentar alta capacidade de formação de filmes estáveis sobre a superfície de substratos sólidos. Foram construídos filmes em duas arquiteturas: uma com a ftalocianina na camada mais externa designada como (SiPy+Cl-/NiTsPc)n e outra com esta na camada mais interna, (NiTsPc/SiPy+Cl-)n com diferentes bicamadas, (onde n= número de bicamadas). A deposição das bicamadas foi monitorada utilizando-se a técnica de espectroscopia de absorção na região do UV-VIS, mais precisamente na região de 500 a 800 nm, onde as ftalocianinas apresentam duas bandas de absorção, uma referente a forma agregada em 630 nm e outra referente a forma monomérica em 669 nm. Foi observado que as variáveis: tempo de imersão, pH e concentração dos polieletrólito influenciam diretamente na construção dos filmes e portanto estas foram otimizadas. Os parâmetros otimizados
foram: tempo de imersão de 280 s, pH = 8 e concentrações de 2 mg mL-1 obtendo-se filmes estáveis e homogêneos, com maiores concentrações de espécies monoméricas em relação
a espécies agregadas. O monitoramento da deposição das bicamadas na região do UV-VIS mostrou uma relação linear entre absorbância e o número de bicamadas depositadas. Os
espectros de FTIR e Raman, evidenciaram as interações entre os grupos SO3 presentes na estrutura das ftalocianinas tetrassulfonadas com os grupos piridínios presentes na estrutura do SiPy+Cl-. Utilizando a técnica de microscopia de força atômica foi possível verificar que a rugosidade média dos filmes diminuiu em função do aumento do número de bicamadas. Por outro lado, a espessura dos filmes aumentou com o número de bicamadas, sendo que a espessura média de cada bicamada foi de 22 nm para a configuração (SiPy+Cl-/NiTsPc)n, e de 19,2 nm para a configuração oposta. Os eletrodos foram aplicados na determinação simultânea de dopamina (DA) em meio aos interferentes ácido ascórbico (AA) e úrico (AU). Observou-se que a arquitetura assim como a espessura dos filmes influenciaram de maneira significativa na resposta eletroquímica na presença dos analitos. O filme que apresentou maior intensidade de corrente e valores de potencial de pico menos positivos foi (SiPy+Cl-/NiTsPc)2. Para este eletrodo, a partir da técnica de voltametria cíclica, foram
observados picos anódicos em 0,30 V, 0,68 V e 0,74 V, na presença de DA, AA e AU, respectivamente. Estudos da variação da velocidade de varredura para dopamina
mostraram que a cinética de transferência eletrônica é controlada pela difusão de espécies a superfície do eletrodo. Utilizando a técnica de voltametria de onda quadrada, detectou-se DA na presença de AA, com separação de potenciais de pico de 350 mV. No entanto, para uma concentração fixa de DA, foi observado um aumento da intensidade de corrente de pico com o aumento da concentração de AA, o que é um indicativo de que o AA eletrocatalisa a reação de oxidação de dopaminaquinona a DA novamente, o que impossibilita a determinação precisa destes analitos simultaneamente. Por outro lado, na presença de AU
com concentração fixa de 4,7 x 10-4 mol L-1, foi possível quantificar DA na faixa de 1,0 x 10-5 a 9,9 x 10-5 mol L-1 com limite de detecção de 2,4 x 10-6 mol L-1 e quantificação de 7,9 x 10-6 mol L-1 com separação de potencial de pico de 500 mV. Variando-se simultaneamente a concentração das duas espécies, DA e AU, na faixa de 1,0 x 10-4 a 9,0 x 10-4 mol L-1 para DA e 1,0 x 10-5 a 9,9 x 10-5 mol L-1 para AU, obteve-se coeficiente de correlação iguais a R = 0,997 e R = 0,988, para AU e DA respectivamente. Os resultados mostram que o eletrodo é seletivo e sensível a determinação de DA em meio aos interferentes AA e AU.
|
3 |
PREPARAÇÃO, CARACTERIZAÇÃO E APLICAÇÃO DE FILMES LbL COM NANOPARTÍCULAS DE PRATA ESTABILIZADAS EM AMIDOOliveira, Rafaela Daiane de 22 August 2014 (has links)
Made available in DSpace on 2017-07-24T19:38:14Z (GMT). No. of bitstreams: 1
RAFAELA D OLIVEIRA.pdf: 2756499 bytes, checksum: e1e60d222b6dbe62066658f22ea4de0b (MD5)
Previous issue date: 2014-08-22 / In this work, starch-stabilized silver nanoparticles (AgNPs-Am) were synthesized by reduction of AgNO3 using the NaBH4. The temperature and concentration of reagents of the synthesis were optimized. The formation of AgNPs-Am was monitored by UV-Vis spectroscopy and dynamic light scattering (DLS). The optimum conditions found for the AgNPs-Am synthesis were starch 0.6 % (w/v), 3.6 x 10-3 mol L-1 NaBH4, 0.9 x 10-3 mol L-1 AgNO3 and synthesis in bath ice. The average size of the AgNPs-Am was between 21 and 77 nm. Transmission electron microscopy (TEM) confirmed the AgNPs-Am formation inside and outside of the starch chains, however the smaller sizes were referred to the NPs stabilized by starch. Measurements of Potential zeta indicated stability of the particles, confirmed by DLS monitoring that demonstrated low agglomeration of NPs in a period of 115 days. For the characterization of AgNPs-Am it was also used infrared spectroscopic (FTIR) and X-ray diffraction (XRD). The AgNPs-Am were applied as polyanion for the construction of films by Layer-by-Layer technique (LbL), alternating with polycation 3-n-propylpyridinium-silsesquioxane (SiPy+Cl-). In order to obtain the films, pH and immersion time of the polyelectrolytes were optimized, as well as the concentration of SiPy+Cl-, monitoring the deposition by UV-Vis. The optimum parameters were immersion time 240 seconds, 2 mg/mL SiPy+Cl- pH 6.5 and AgNPs-Am pH 9.0. Atomic force microscopy (AFM) images showed that film thickness increases linearly and the roughness decrease with the bilayers number. FTIR spectra and Raman confirmed the interaction between the polyelectrolytes in the assembly of LbL films. The LbL films with architecture (SiPy+Cl-/AgNPs-Am)n (n = bilayers number) were applied as modified electrodes for iodine detection, using differential pulse voltammetry (DPV). It was verified that interaction of the components in the LbL films improved the current intensity. The film (SiPy+Cl-/AgNPs-Am)n (n=5) showed better current response in phosphate buffered saline (PBS) 0.1 mol L-1 pH 7.0. The instrumental parameters Epulse, and tpulse were optimized by 23 factorial design. It was verified a significant effect for third order interaction for the intensity of iodine redox peak currents, so the instrumentals parameters were evaluated together. The results of optimization were tpulse = 0.05 s, = 40 mV/s e Epulse = 50 mV. Accordingly, the modified electrode obtained a linear response for iodine concentrations ranging from 4.34 x 10-5 to 3.47 x 10-4 mol L-1 (R=0,9936) and from 4.40 x 10-4 to 4.24 x 10-3 mol L-1 (R=0,9938). It was obtained limit of detection (LOD) 5.56 x 10-6 and 1.51 x 10-5 mol L-1 and for limit of quantification (LOQ) 1.85 x 10-5 and 5.04 x 10-5 mol L-1, respectively. The AgNPs-Am synthesized in this work also acted as colorimetric sensor for iodine, with three regions of linearity. Two analytical curves were obtained for iodine concentration range from 2.40 x 10-7 to 9.50 x 10-7 mol L-1 and from 2.40 x 10-6 mol L-1 to 1.60 x 10-5 mol L-1. It was obtained a LOD of 1.71 x 10-8 and 1.06 x 10-6 mol L-1 and LOQ of 5.69 x 10-8 to 3.55 x 10-6 mol L-1, respectively for each range. Color variations obtained in these concentrations correspond to interaction between iodine and silver, which were monitored by UV-Vis band showed in 410 nm. At concentrations above 5.50 x 10-5 mol L-1 there is the appearance of blue color, absorbance in 600 nm, corresponding to the interaction between starch and iodine. It was also obtained a linear relationship for iodine concentration from 5.50 x 10-5 mol L-1 to 9.50 x 10-5 mol L-1. For this concentration range, LOD and LOQ were respectively 1.37 x 10-6 and 4.58 x 10-6 mol L-1. The results presented confirm the potential use of AgNPs-Am for iodine detection, both for the modification of electrodes for electrochemical determination as a colorimetric sensor. / Neste trabalho foram sintetizadas nanopartículas de prata estabilizadas em amido (AgNPs-Am). A síntese foi realizada por redução do sal AgNO3 utilizando o NaBH4. A temperatura de síntese e concentração dos reagentes foram otimizadas, a formação das AgNPs-Am foi monitorada por espectroscopia na região do UV-Vis e medidas de espalhamento dinâmico da luz (DLS). As condições ótimas encontradas para síntese de AgNPs-Am foram amido 0,6 % (m/v), 3,6.10-3 mol.L-1 de NaBH4, 0,9.10-3 mol.L-1 de AgNO3 e síntese em banho de gelo. O tamanho médio das AgNPs-Am foi entre 21 e 77 nm. Imagens de microscopia eletrônica de transmissão (TEM) confirmaram que houve formação das AgNPs no interior e fora das cadeias de amido, sendo os menores tamanhos referentes às NPs estabilizadas pelo amido. Medidas de Potencial zeta indicaram estabilidade das NPs, confirmada por acompanhamento DLS que demonstrou baixa aglomeração em um período de 115 dias. Para caracterização das AgNPs-Am utilizou-se também espectroscopia na região do infravermelho (FTIR) e difração de raios X (XRD). As AgNPs-Am foram utilizadas como poliânion para construção de filmes pela técnica Layer-by-Layer (LbL), alternando com policátion 3-n-propilpiridínio-silsesquioxano (SiPy+Cl-). Para construção dos filmes, pH e tempo de imersão dos polieletrólitos foram otimizados, assim como concentração de SiPy+Cl-, monitorando a deposição por UV-Vis. Os parâmetros ótimos foram tempo de imersão 240 segundos, solução de 2 mg/mL de SiPy+Cl- pH 6,5 e AgNPs-Am pH 9,0. Imagens de microscopia de força atômica (AFM) mostram que a espessura dos filmes aumenta linearmente e a rugosidade decresce com o número de bicamadas. Espectros FTIR e Raman confirmaram a interação entre os polieletrólitos na montagem dos filmes. Os filmes LbL com configuração (SiPy+Cl-/AgNPs-Am)n (n = número de bicamadas) foram aplicados como eletrodos modificados para detecção de iodo, utilizando-se voltametria de pulso diferencial (VPD). Verificou-se que a interação dos componentes no filme LbL melhorou a intensidade de corrente. O filme (SiPy+Cl-/AgNPs-Am)n (n=5) apresentou melhor resposta de corrente em eletrólito suporte tampão fosfato salino (PBS) 0,1 mol.L-1 pH 7,0. Os parâmetros instrumentais Epulso, e tpulso foram otimizados por planejamento fatorial 23. Verificou-se efeito significativo para interação de terceira ordem para intensidade de corrente do pico de redução do iodo, portanto os parâmetros instrumentais foram avaliados em conjunto. Os resultados da otimização foram tpulso = 0,05 s, = 40 mV/s e Epulso = 50 mV. Nestas condições, o eletrodo modificado obteve resposta linear para concentrações de iodo que variam de 4,34.10-5 a 3,47.10-4 mol.L-1 (R=0,9936) e de 4,40.10-4 a 4,24.10-3 mol.L-1 (R=0,9938). Respectivamente, obteve-se limite de detecção 5,56.10-6 e 1,51.10-5 mol.L-1 e para o limite de quantificação 1,85.10-5 e 5,04.10-5 mol.L-1. As AgNPs-Am sintetizadas neste trabalho também atuaram como sensor colorimétrico de iodo, com três regiões de linearidade. Duas curvas analíticas foram construídas para concentrações de iodo de 2,40.10-7 a 9,50.10-7 mol.L-1 e de 2,40.10-6 mol.L-1 a 1,60.10-5 mol.L-1. Obteve-se LD de 1,71.10-8 e 1,06.10-6 mol.L-1 e LQ de 5,69.10-8 e 3,55.10-6 mol.L-1, respectivamente para cada intervalo. As variações de cores obtidas nestas concentrações correspondem a interação entre o iodo e a prata, as quais foram acompanhadas pela banda UV-Vis apresentada em 410 nm. Em concentrações acima de 5,50.10-5 mol.L-1 observa-se o aparecimento de coloração azul, absorbância em 600 nm, correspondente a interação entre amido e iodo. Obteve-se linearidade para concentrações de 5,50.10-5 mol.L-1 a 9,50.10-5 mol.L-1. Para este intervalo de concentração, os LD e LQ são respectivamente 1,37.10-6 e 4,58.10-6 mol.L-1. Os resultados apresentados confirmam a potencialidade do uso das AgNPs-Am para detecção de iodo, tanto na modificação de eletrodos para determinação eletroquímica, quanto o uso como sensor colorimétrico.
|
4 |
Estudo de filmes automontados de compostos de níquel na presença do cloreto de 3-n-propil silsesquioxano e surfactantesIntema, Rolf de Campos 05 July 2017 (has links)
Submitted by Angela Maria de Oliveira (amolivei@uepg.br) on 2018-02-07T12:42:14Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Rolf de Campos.pdf: 5588727 bytes, checksum: d81ab37d8cd335285d51711794fbbc44 (MD5) / Made available in DSpace on 2018-02-07T12:42:14Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Rolf de Campos.pdf: 5588727 bytes, checksum: d81ab37d8cd335285d51711794fbbc44 (MD5)
Previous issue date: 2017-07-05 / Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná / Esta tese descreve as interações entre o surfactante não iônico p-(1,1,3,3 tetrametilbutil)
fenil polietilenoglicol (denominado Triton X) e dodecil sulfato de sódio (SDS) com o
polímero catiônico 3-cloreto-n-propilpiridínio silsesquioxano (SiPy) na presença da
ftalocianina tetrasulfonada de níquel (NiTsPc), as quais foram avaliadas utilizando
medidas de tensão superficial e viscosidade. Os efeitos dessas interações também foram
estudados quando estes polieletrólitos foram transferidos para filmes finos pela técnica
LbL sobre substrato condutor (óxido de estanho dopado com índio – ITO), quartzo e
silício. Observou-se, por meio de técnica espectroscópica de absorção na região do UVVis,
que há um efeito sinérgico proporcionado pela interação dos polieletrólitos catiônico
(SiPy/surfactante) e aniônico (NiTsPc) nos filmes LbL. Por técnicas espectroscópicas
FTIR e Raman, e técnicas eletroquímicas tais como impedância eletroquímica e
voltametria cíclica, foi constatado que há coexistência de micelas mistas e puras e que a
adsorção destes agregados tem um papel importante na superfície dos filmes LbL. Foi
também realizada a síntese e a caracterização de nanopartículas de hidróxido de níquel,
em sua fase α, estabilizadas pelo polímero SiPy, e pelo surfactante zwiteriônico 3-(1-
alquil-3-imidazólio)propano-sulfonado. O surfactante ImS3-14 foi escolhido por sua
interação preferencial com ânions, tornando-o um excelente limitante para o crescimento
das nanopartículas de Ni(OH)2. A formação dos agregados foi caracterizada por
espalhamento dinâmico de luz e potencial zeta, para determinar tamanho e carga das
nanopartículas, respectivamente. Após a síntese das nanopartículas, estas foram
depositadas através da técnica LbL em vários substratos. O crescimento dos filmes foi
acompanhado por UV-VIS e sua caracterização foi realizada pelas técnicas de FTIR,
Raman, AFM e MEV-FEG. As características eletroquímicas dos filmes foram estudadas
por voltametria cíclica (VC) e espectroscopia de impedância eletroquímica (EIE). / This thesis describes the interactions between the nonionic surfactant p-(1,1,3,3-
tetramethylbutyl)phenyl-polyethylene glycol (Triton X) and sodium dodecyl sulfate
(SDS) with the cationic polymer 3-chloride-n-propylpyridinium silsesquioxane (SiPy) in
the presence of nickel phthalocyanine tetrasulfonate (NiTsPc), which they were evaluated
using surface tension and viscosity measurements. The effects of these interactions were
also studied when these polyelectrolytes were transferred to thin films by the LbL
technique on conductive substrate (indium doped tin oxide - ITO), quartz and silicon. It
has been observed by UV-Vis absorption spectroscopy there is a synergistic effect
provided by the interaction of the cationic polyelectrolytes (SiPy / surfactant) and anionic
(NiTsPc) polyelectrolytes in the LbL films. Spectroscopic techniques, such as, FTIR and
Raman, and electrochemical techniques, electrochemical impedance and cyclic
voltammetry, it was observed that there is a coexistence of mixed and pure micelles. The
adsorption of these aggregates plays an important role on the surface of the LbL films.
The synthesis and characterization of nickel hydroxide nanoparticles, in their α phase,
stabilized by the SiPy polymer, and by the zwitterionic surfactant 3- (1-alkyl-3 -
imidazolium) propane sulfonate was realized. The surfactant ImS3-14 was chosen for its
preferential interaction with anions, making it an excellent stabilizer for the growth of the
Ni(OH)2 nanoparticles. The formation of the aggregates was characterized by dynamic
scattering of light (DLS) and zeta potential to determine size and charge, respectively.
After the synthesis of the nanoparticles, they were deposited by the LbL technique on
several substrates. The growth of the films was accompanied by UV-VIS and their
characterization was evaluated by FTIR, Raman, AFM and MEV-FEG techniques. The
electrochemical characteristics of the films were studied using cyclic voltammetry (CV)
and electrochemical impedance spectroscopy (EIS).
|
Page generated in 0.0743 seconds