Spelling suggestions: "subject:"nanocrystals"" "subject:"nanopcrystals""
1 |
Oxygen Vacancy Chemistry in CeriaKullgren, Jolla January 2012 (has links)
Cerium(IV) oxide (CeO2), ceria, is an active metal oxide used in solid oxide fuel cells and for the purification of exhaust gases in vehicle emissions control. Behind these technically important applications of ceria lies one overriding feature, namely ceria's exceptional reduction-oxidation properties. These are enabled by the duality of the cerium ion which easily toggles between Ce4+ and Ce3+. Here the cerium 4f electrons and oxygen vacancies (missing oxygen ions in the structure) are key players. In this thesis, the nature of ceria's f electrons and oxygen vacancies are in focus, and examined with theoretical calculations. It is shown that for single oxygen vacancies at ceria surfaces, the intimate coupling between geometrical structure and electron localisation gives a multitude of almost degenerate local energy mimima. With many vacancies, the situation becomes even more complex, and not even state-of-the-art quantum-mechanical calculations manage to predict the experimentally observed phenomenon of vacancy clustering. Instead, an alternative set of computer experiments managed to produce stable vacancy chains and trimers consistent with experimental findings from the literature and revealed a new general principle for surface vacancy clustering. The rich surface chemistry of ceria involves not only oxygen vacancies but also other active oxygen species such as superoxide ions (O2−). Experiments have shown that nanocrystalline ceria demonstrates an unusually large oxygen storage capacity (OSC) and an appreciable low-temperature redox activity, which have been ascribed to superoxide species. A mechanism explaining these phenomena is presented. The ceria surface is also known to interact with SOx molecules, which is relevant both in the context of sulfur poisoning of ceria-based catalysts and sulfur recovery from them. In this thesis, the sulfur species and key mechanisms involved are identified.
|
2 |
A Novel Synthesis and Characterization of Copper Chloride Nanocrystals in a Sodium Chloride MatrixZell, Elizabeth T. January 2013 (has links)
No description available.
|
3 |
Structure-Process-Property Relationships of Cellulose Nanocrystal Thermoplastic Urethane CompositesFallon, Jake Jeffrey 25 October 2019 (has links)
Nanomaterials are becoming increasingly prevalent in final use products as we continue to improve our understanding of their structure and properties and optimize their processing. The useful applications for these materials extend from new drug delivery systems to improved materials for various transport industries and many more. Nanoscale materials which are commonly used include but are not limited to carbon nanotubes, graphene, silica, nanoclays, and cellulose nanocrystals. The literature presented herein aims to investigate structure-process-property relationships of cellulose nanocrystal (CNC) polymer composites. These CNC nanocomposites are unique in that they provide a dynamic mechanical response when exposed to H2O. Currently, these nanocomposite systems are most commonly solvent cast into their final geometry. In order to enable the use of these materials in more commercial processing methods such as extrusion, we must understand their inherent structure-process-property relationships. To do this, we first characterize the influence of temperature and shear orientation on the unique mechanical adaptive response. Next, the melt processability of the nanocomposite was characterized using material extrusion (MatEx) additive manufacturing (AM). Additionally, the diffusion behavior of water within the film, which controls the dynamic mechanical response, was probed to better predict the concentration dependent behavior. Finally, a literature review is presented which outlines the state of the art for melt extrusion AM of fiber filled polymer composite materials and provides insight into how we can further improve mechanical properties through further addition of composite filler materials.
The initial focus of the dissertation is on the influence of melt processing CNC thermoplastic urethane (TPU) composites and the resulting impact on the mechanical adaptive response. Dynamic mechanical analysis (DMA) fitted with a submersion clamp was used to measure the mechanical softening of the composite while submerged in water. Small angle x-ray scattering (SAXS) and polarized raman spectroscopy were used to qualify the orientation of the various CNC/TPU composite samples. The results of the orientation measurements show that solvent casting the films orient CNCs into a mostly random state and melt extrusion induces some degree of uniaxial orientation. The DMA results indicate that at the processing conditions tested, the uniaxial orientation and thermal exposure from the melt processing do not significantly impact the mechanical responsiveness of the material.
The next objective of this work was to expand upon the aforementioned learnings and determine the CNC composite material processability using MatEx. The ability to process mechanically dynamic CNC/TPU composites with a selective deposition process capable of generating complex geometries may enable new functionality and design freedom. To realize this potential, a two factor (extrusion temperature and extrusion speed) three level (240, 250 and 260 ℃/ 600, 1100 and 1600 mm/min) design of experiments (DOE) was utilized. The resulting printed parts were characterized by DMA to determine their respective mechanical adaptivity. Processing conditions did prove to have a significant impact on the mechanical adaptivity of the printed part. A correlation between applied energy and mechanical adaptivity demonstrates how increasing residence time and temperature can reduce mechanical performance. The shape fixity of the printed parts was calculated to be 80.4% and shape recovery was 44.2%. A 3D prototype part was also produced to demonstrate the unique properties of this material.
Although the understanding of the melt processing behavior of these CNC composites had been improved, a stronger understanding of the moisture diffusion behavior within the composite is required to fully realize and control their potential. Therefore, a study was undertaken to capture the diffusion behavior and correlate it to the mechanical responsive mechanism. To do this, a thermogravimetric sorption analysis (TGA-SA) instrument was used to monitor the mass uptake as a function of time exposed to a humid environment. These data were then compared to DMA data collected for the same samples exposed to a similar degree of humidity. All studies were conducted as a function of concentration in order to better elucidate the influence that percolating network structures may have on the resultant properties. Interestingly, the results show how increasing addition of CNCs results in a decrease in the rate of diffusivity, which is counter to what has been commonly hypothesized. It is hypothesized that increasing CNC content restricts the mobility of surrounding amorphous matrix material, thus increasing the resistance for diffusion of a water molecule. However, the rate of mechanical adaptation was found to increase with increasing CNC content, which is believed to be a result of the increased connectivity, enabling further transport of water molecules. / Doctor of Philosophy / Nanomaterials are becoming increasingly prevalent in final use products as we continue to improve our understanding of their structure and properties and optimize their processing. The useful applications for these materials extend from new drug delivery systems to improved materials for various transport industries and many more. The literature presented herein aims to investigate structure-process-property relationships of cellulose nanocrystal (CNC) polymer composites. These CNC nanocomposites are unique in that they provide a unique mechanical response when exposed to water. In order to enable the use of these materials in more commercial processing methods, we must understand their inherent structure-process-property relationships. The following documents multiple aspects of these unique composite materials which enables their commercial viability and scientific versatility.
|
4 |
Metal Modified Ge-Se Glass Films and Their Potential for Nanodipole Junctionless PhotovoltaicsJunaghadwala, Sakina Mohsin January 2011 (has links)
No description available.
|
5 |
Oriented micro/nano-crystallization in silicate glasses under thermal or laser field for mastering optical non-linear optics in bulk / Micro/nano-cristallisation orientée dans des verres silices sous le champ thermique ou du laser pour maîtriser les propriétés optique nonlinéaire en volumeHe, Xuan 01 December 2013 (has links)
Au cours des dernières années, les matériaux optiques non linéaires ont attiré beaucoup d'attention en raison de leur application dans les télécommunications optiques. Les vitro-céramiques pour l’optique non-linéaire, ayant une microstructure alignée, présentent des propriétés physiques anisotropes. Il est donc intéressant de maîtriser la cristallisation dans ce genre de verre. Nous avons étudié ici la distribution, la taille et l'orientation sous un champ supplémentaire, en particulier par l’irradiation femtoseconde, de verres silicatés. Ce travail est important pour la conception et la production de nouveaux matériaux optiques non linéaires multi- fonction. Dans cette thèse, le champ thermique a été utilisé pour produire des cristaux dans un verre SrO-TiO₂-SiO₂. L’analyse a été menée à l’aide de la méthode des franges de Maker et de de diffraction des rayons X pour étudier la cristallisation et les propriétés optiques non-linéaires. Il a montré que les cristaux non linéaires Sr₂TiSi₂O₈ peut être obtenue dans la couche de surface par traitement thermique. L'axe polaire de cristaux orientés est perpendiculaire à la surface du verre. En augmentant la température ou en prolongeant la durée de traitement thermique, l’apparition d’une intensité non-nulle de génération de second harmonique (GSH) en incidence perpendiculaire indique la présence de cristaux orientés de manière aléatoire dans le volume du verre. Etant donné la cristallisation, spatialement difficile à contrôler par traitement thermique, l’irradiation laser femtoseconde pour contrôler la cristallisation dans le verre sont proposée en raison de son contrôle précis du dépôt d'énergie dans le temps et dans l'espace. Il ouvre des possibilités fantastiques pour la fabrication de matériaux multifonctionnels par maîtrisant la cristallization des cristaux non linéaires dans le verre. Nous avons précipité des cristaux orientés de LiNbO₃ et de Sr₂TiSi₂O₈ en volume par irradiation laser femtoseconde à haute cadence (typ. 300 kHz). Dans le verre Li₂O-Nb₂O₅-SiO₂, les micro-/nano-cristaux en variant l'énergie d'impulsion et la direction de polarisation ont obtenu. En particulier, lors de l'application à basse énergie et de la polarisation parallèle à la direction d'inscription du laser, la cristallization orientée en nanomètre a été démontrée par EBSD (Electron diffraction rétro-diffusée). Le mesure microscopique de SH a prouvé l’orientation préférentielle de cristallisation parallèlement à la direction de déplacement du faisceau laser. Afin de comprendre l'orientation exacte des cristaux par rapport à la direction d'écriture, une série de mesurer les signaux cohérent de SH ont été réalisés dans des paires de lignes de laser avec des orientations de déplacement opposées. EDS (spectromètre à dispersion d'énergie) et la micro-sonde nucléaire ont été utilisées pour réaliser l'analyse chimique dans les lignes de laser. Nous discutons aussi le mécanisme de cristallisation orientée en mode statique et en mode dynamique en illustrant la distribution des gradients différents. Pour le système SrO-TiO₂-SiO₂, l'irradiation du laser a été appliquée dans les verres stoechiométrique et non-stoechiométrique. Dans le premier cas, non seulement la taille et la distribution peuvent être contrôlées en variant les paramètres du laser, mais aussi la phase peuvent être choisis dans l'échantillon. La mesure de SH a montré que l'axe polaire de cristaux est toujours dans le sens de l'écriture. Pour le verre non-stoechiométrique, des purs cristaux de Sr₂TiSi₂O₈ ont été obtenus seulement. En utilisant EBSD, l'écriture asymétrique ont été étudiés en variant l’orientation de la polarisation et de l'écriture. On a montré ainsi que le mécanisme d'orientation est probablement dû à l'action combinée du front « tilté » de l’impulsion et à l’orientation du plan de polarisation qui conduit à une photosensibilité anisotrope. En conséquence, cela induit une distribution asymétrique des gradients thermiques et chimiques. / In the past few years, nonlinear optical materials have attracted much attention due to their application in optical telecommunications. Nonlinear optical glass-related materials have been widely studied according to their advantages. Glass ceramics having an aligned microstructure would exhibit an anisotropy of physical properties. This dissertation mainly contributes to the control of micro/nano-crystallization in silicate glass in crystalline phase, distribution, size and orientation under additional field, particularly by femtosecond irradiation, to master the nonlinear optical properties of glass further. This work is significant for the design and production of novel nonlinear optical material with multi-function in future. In this thesis, thermal field was used to induce crystals in SrO-TiO₂-SiO₂ glass. The crystallization behavior of glasses in different heat-treated condition and their second-order nonlinear optical properties have been analyzed by Maker fringes method and X-ray diffraction measurement, respectively. It showed that the oriented crystallization of nonlinear Sr₂TiSi₂O₈ crystals can be obtained in the surface layer by heat treatment. The polar axis of oriented crystals was perpendicular to the sample surface. Moreover, by applying higher temperature or prolonging the time duration of heat treatment, the maximum intensity of second harmonic generation shifting toward 0º is likely due to the presence of randomly distributed crystals in glass and surface crystallization turns to be volume at this moment. However, since it is hard to control crystallization by heat treatment and time-consuming, femtosecond laser irradiation was proposed to realize the control of crystallization in glass owing to the accessible control of energy deposition in time and in space. It opens fantastic opportunities to manufacture novel multifunctional materials by manipulating the crystallization of nonlinear crystals embedded in glasses. Therefore, we achieved to precipitate preferential oriented LiNbO₃ and Sr₂TiSi₂O₈ crystals in glass with femtosecond laser irradiation at high repetition rate (typ. 300 kHz). In Li₂O-Nb₂O₅-SiO₂ glass, we obtained micro-/nano-crystals in glass sample by varying pulse energy and polarization direction. Specifically, when applying low pulse energy and polarization parallel to laser writing direction, the oriented nano-crystallization has been obtained as shown by EBSD (Electron back-scattered diffraction). Second harmonic (SH) microscopy measurement illustrated preferred orientation of crystallization in laser lines. In order to understand the exact orientation of crystals with respect to the writing direction, a series of coherent SH measurement has been achieved in pairs of laser lines written in opposite orientation. EDS (Energy Dispersive Spectrometer) and nuclear micro-probe has been used to realize the chemical analysis in laser lines. The mechanism of oriented crystallization was discussed both in static mode and in dynamic mode through illustrating the distribution of different gradients. In SrO-TiO₂-SiO₂ system, laser irradiation was applied both in stoichiometric and non-stoichiometric glasses. In the former case, not only the size and distribution can be controlled by varying laser parameters, but also the crystalline phase can be chosen in samples. SH microscopy measurement was used to characterize the nonlinear properties of glass and it implied that the polar axis of crystals is always along the writing direction. In non-stoichiometric glass, only pure Sr₂TiSi₂O₈ crystals were obtained. The asymmetric writing involving oriented crystallization has been studied by varying polarization and writing orientation. The orientational dependent is likely due to the combined action of oblique pulse front tilt affected by the polarization orientation plane leading to different anisotropic photosensitivity and its aftereffects to induce asymmetric distribution of thermal and chemical gradients.
|
6 |
Investigação espectroscópica e estudo dos processos de conversão de energia em vidros e nano-cristais co-dopados com íons Tb3+ e Yb3+ / Spectroscopic investigation and study of the processes of energy conversion in Tb3+ and Yb3+ ions co-doped glasses and nanocrystalsTerra, Idelma Aparecida Alves 05 July 2013 (has links)
A busca por alternativas viáveis de produção de energia limpa e renovável, utilizando recursos naturais, tem sido um grande desafio. Em especial, o interesse no uso da energia solar para obter energia elétrica tem aumentado. Todavia, as células solares convencionais que são confeccionadas a partir de silício cristalino (Si-c) apresentam uma eficiência de conversão limitada, principalmente, devido às perdas por incompatibilidade espectral. Sendo assim, um dos objetivos dos pesquisadores na área de fotovoltaicos tem sido converter eficientemente fótons da região do visível do espectro solar para a região do infravermelho, onde a célula solar de Si-c possui maior eficiência. A eficiência desta conversão poderia ser melhorada de 28% até 40% usando conversores de energia compostos por íons terras raras. Neste trabalho foram estudadas as propriedades espectroscópicas dos íons terras raras Térbio (Tb3+) e Itérbio (Yb3+), embebidos em três diferentes materiais: vidro aluminosilicato de cálcio com baixa concentração de sílica (7%) (LSCAS), vidro tetraborato de cálcio-lítio (Calibo) e nano-cristais de óxido de zircônia (ZrO2). Sendo assim, nossos estudos visam elucidar os mecanismos geradores dos processos de conversão ascendente e descendente de energia. No processo de conversão ascendente de energia há conversão dos fótons de excitação de baixa energia na região do infravermelho em fótons de alta energia na região do visível. Por outro lado, no processo de conversão descendente de energia ocorre a conversão dos fótons de excitação de alta energia na região do ultravioleta/visível em um ou mais fótons de baixa energia na região do infravermelho. As propriedades espectroscópicas dos materiais estudados foram discutidas a partir das medidas de absorção, luminescência, excitação, evolução temporal da luminescência, curva de potência, difração de raios-X, X-Ray Absorption Near Edge Structure e ressonância paramagnética eletrônica, em função da concentração dos íons Tb3+ e Yb3+. Os resultados mostraram que todas as amostras apresentam conversão ascendente de energia. Assim como, em todas as amostras ocorre o processo de conversão descendente de energia. Em ambos os processos foram identificados os mecanismos geradores dos mesmos. Estes resultados mostram um avanço nos estudos dos processos de conversão ascendente e descendente de energia em sistemas co-dopados com íons Tb3+ e Yb3+. Os resultados sugerem que os materiais estudados podem ser empregados para aumentar a eficiência de conversão da célula solar de Si-c via conversão descendente de energia. / The search for possible alternatives to produce clean and renewable energy using the natural resources has been a great challenge. In particular, the interest to use the solar energy to produce electricity has been increased. However, crystalline silicon-based (c-Si) conventional solar cells have limited conversion efficiency, mainly due to spectral mismatch losses. Thus, one of the goals of some researchers in the photovoltaic field has been to efficiently convert photons in the visible region of the solar spectrum to the infrared region, where the c-Si solar cell has its higher efficiency. The efficiency of this conversion could be enhanced from 28% up to 40% using energy converters based on rare-earths ions. In this work, the spectroscopic properties of rare earth ions, such as Terbium (Tb3+) and Ytterbium (Yb3+) embedded in three different materials were studied: low- silica calcium aluminosilicate glass (7%) (LSCAS), lithium calcium tetraborate glass (Calibo) and zirconium oxide nano-crystals (ZrO2). Thus, our studies aimed to elucidate the mechanisms that generate the Up-conversion and Down-conversion processes. In the Up-conversion process, there is the conversion of the low-energy excitation photons in the near-infrared to high-energy photons in the visible. On the other hand, in the Down-conversion process there is the conversion of the high-energy excitation photons in the ultraviolet/visible region to low-energy photons in the near-infrared region. The optical properties of the studied materials were discussed through absorption, luminescence, excitation, temporal evolution of the luminescence, power curve, X-ray diffraction, X-Ray Absorption Near Edge Structure and electron paramagnetic resonance measurements, as a function of the concentration of Tb3+ and Yb3+ ions. The results showed that all samples exhibit Up-conversion process. In addition, in all samples occurs the Down-conversion process. In both processes were identified the mechanisms that produce them. These results show a breakthrough in the studies of the Up-conversion and Down-conversion processes in Tb3+ and Yb3+ co-doped systems. The results suggest that the materials are applicable in enhancing the conversion efficiency of the Si-c solar cell via NIR Down-conversion.
|
7 |
Investigação espectroscópica e estudo dos processos de conversão de energia em vidros e nano-cristais co-dopados com íons Tb3+ e Yb3+ / Spectroscopic investigation and study of the processes of energy conversion in Tb3+ and Yb3+ ions co-doped glasses and nanocrystalsIdelma Aparecida Alves Terra 05 July 2013 (has links)
A busca por alternativas viáveis de produção de energia limpa e renovável, utilizando recursos naturais, tem sido um grande desafio. Em especial, o interesse no uso da energia solar para obter energia elétrica tem aumentado. Todavia, as células solares convencionais que são confeccionadas a partir de silício cristalino (Si-c) apresentam uma eficiência de conversão limitada, principalmente, devido às perdas por incompatibilidade espectral. Sendo assim, um dos objetivos dos pesquisadores na área de fotovoltaicos tem sido converter eficientemente fótons da região do visível do espectro solar para a região do infravermelho, onde a célula solar de Si-c possui maior eficiência. A eficiência desta conversão poderia ser melhorada de 28% até 40% usando conversores de energia compostos por íons terras raras. Neste trabalho foram estudadas as propriedades espectroscópicas dos íons terras raras Térbio (Tb3+) e Itérbio (Yb3+), embebidos em três diferentes materiais: vidro aluminosilicato de cálcio com baixa concentração de sílica (7%) (LSCAS), vidro tetraborato de cálcio-lítio (Calibo) e nano-cristais de óxido de zircônia (ZrO2). Sendo assim, nossos estudos visam elucidar os mecanismos geradores dos processos de conversão ascendente e descendente de energia. No processo de conversão ascendente de energia há conversão dos fótons de excitação de baixa energia na região do infravermelho em fótons de alta energia na região do visível. Por outro lado, no processo de conversão descendente de energia ocorre a conversão dos fótons de excitação de alta energia na região do ultravioleta/visível em um ou mais fótons de baixa energia na região do infravermelho. As propriedades espectroscópicas dos materiais estudados foram discutidas a partir das medidas de absorção, luminescência, excitação, evolução temporal da luminescência, curva de potência, difração de raios-X, X-Ray Absorption Near Edge Structure e ressonância paramagnética eletrônica, em função da concentração dos íons Tb3+ e Yb3+. Os resultados mostraram que todas as amostras apresentam conversão ascendente de energia. Assim como, em todas as amostras ocorre o processo de conversão descendente de energia. Em ambos os processos foram identificados os mecanismos geradores dos mesmos. Estes resultados mostram um avanço nos estudos dos processos de conversão ascendente e descendente de energia em sistemas co-dopados com íons Tb3+ e Yb3+. Os resultados sugerem que os materiais estudados podem ser empregados para aumentar a eficiência de conversão da célula solar de Si-c via conversão descendente de energia. / The search for possible alternatives to produce clean and renewable energy using the natural resources has been a great challenge. In particular, the interest to use the solar energy to produce electricity has been increased. However, crystalline silicon-based (c-Si) conventional solar cells have limited conversion efficiency, mainly due to spectral mismatch losses. Thus, one of the goals of some researchers in the photovoltaic field has been to efficiently convert photons in the visible region of the solar spectrum to the infrared region, where the c-Si solar cell has its higher efficiency. The efficiency of this conversion could be enhanced from 28% up to 40% using energy converters based on rare-earths ions. In this work, the spectroscopic properties of rare earth ions, such as Terbium (Tb3+) and Ytterbium (Yb3+) embedded in three different materials were studied: low- silica calcium aluminosilicate glass (7%) (LSCAS), lithium calcium tetraborate glass (Calibo) and zirconium oxide nano-crystals (ZrO2). Thus, our studies aimed to elucidate the mechanisms that generate the Up-conversion and Down-conversion processes. In the Up-conversion process, there is the conversion of the low-energy excitation photons in the near-infrared to high-energy photons in the visible. On the other hand, in the Down-conversion process there is the conversion of the high-energy excitation photons in the ultraviolet/visible region to low-energy photons in the near-infrared region. The optical properties of the studied materials were discussed through absorption, luminescence, excitation, temporal evolution of the luminescence, power curve, X-ray diffraction, X-Ray Absorption Near Edge Structure and electron paramagnetic resonance measurements, as a function of the concentration of Tb3+ and Yb3+ ions. The results showed that all samples exhibit Up-conversion process. In addition, in all samples occurs the Down-conversion process. In both processes were identified the mechanisms that produce them. These results show a breakthrough in the studies of the Up-conversion and Down-conversion processes in Tb3+ and Yb3+ co-doped systems. The results suggest that the materials are applicable in enhancing the conversion efficiency of the Si-c solar cell via NIR Down-conversion.
|
8 |
Modélisation de solides à nanocristaux de silicium / Modelling of silicon nanocrystal solidsLepage, Hadrien 22 October 2012 (has links)
Les propriétés physico-chimiques d'un nanocristal semi-conducteur sphérique, intermédiaires entre la molécule et le solide, dépendent de sa taille. Empilés ou dispersés, ces nanocristaux sont les briques architecturales de nouveaux matériaux fonctionnels aux propriétés ajustables, en particulier pour l’optoélectronique. Cette thèse s'inscrit dans le développement de ces nouveaux matériaux et présente avant tout une méthodologie pour la simulation du transport électronique dans un solide à nanocristaux en régime de faible couplage électronique appliquée à des nanocristaux de silicium dans une matrice de SiO2 pour les applications photovoltaïques. La cinétique du déplacement des porteurs est liée au taux de transfert tunnel (hopping) entre nanocristaux. Ces taux sont calculés dans le cadre de la théorie de Marcus et prennent en compte l'interaction électron-phonon dont l'effet du champ de polarisation dans la matrice ainsi que les interactions électrostatiques à courte et longue portée. Le calcul des états électroniques (électrons et trous) en théorie k.p associé à l'utilisation de la formule de Bardeen donne au code la capacité, par rapport à la littérature, de fournir des résultats (mobilité ou courant) en valeur absolue. Les résultats de mobilité ainsi obtenus pour des empilements cubiques idéaux viennent contredire les résultats de la littérature et incitent à considérer d'autres matériaux notamment en ce qui concerne la matrice pour obtenir de meilleurs performances. En outre, les résultats de simulation de dispositifs montrent l'impact considérable des électrodes sur les caractéristiques courant-tension. Aussi, un nouvel algorithme Monte-Carlo Cinétique accéléré a été adapté afin de pouvoir reproduire le désordre inhérent à la méthode de fabrication tout en maintenant un temps de simulation raisonnable. Ainsi l'impact du désordre en taille se révèle faible à température ambiante tandis que les chemins de percolation occultent la contribution des autres chemins de conduction. Des résultats de caractérisation comparés aux simulations tendent par ailleurs à indiquer que ces chemins peuvent concentrer les porteurs et exhiber un phénomène de blocage de coulomb. Enfin, la section efficace d'absorption est calculée théoriquement et permet d'obtenir le taux de génération sous illumination qui se révèle proche du silicium massif. Et une méthode en microscopie à sonde de Kelvin est décrite pour caractériser la durée de vie des porteurs c'est-à-dire le taux de recombinaison, les résultats ainsi obtenus étant cohérents avec d'autres techniques expérimentales. / The physicochemical properties of a spherical semiconductor nanocrystal, intermediate between the molecule and the solid depend on its size. Stacked or dispersed, these nanocrystals are building blocks of new functional materials with tunable properties, particularly appealing for optoelectronics. This thesis takes part in the development of these new materials. It mainly presents a methodology for the simulation of electronic transport in nanocrystal solids within the weak electronic coupling regime. It is applied to a material made of silicon nanocrystals embedded in silicon oxide and considered for photovoltaïc applications. The displacement kinetics of charge carriers is related to the tunneling transfer rate (hopping) between nanocrystals. These rates are calculated within the framework of Marcus theory and take into account the electron-phonon interactions, the effect of the bias field and the electron-electron interactions at short and long range. The calculation of electronic states (electrons and holes) in k.p theory associated with the use of Bardeen's formula provides, compared to previous works, results (mobility or current) in absolute terms. The mobility thus computed is far lower than the results of the literature and encourage to consider other materials. Furthermore, the device simulations show the significant impact of the electrodes on the current-voltage characteristics. Also, a new accelerated kinetic Monte-Carlo algorithm has been adapted in order to reproduce the disorder inherent in the manufacturing process while maintaining a reasonable simulation time. Thus the impact of the size disorder is poor at room temperature while the percolation paths shunt the contribution of other conduction paths. Characterization results compared to simulations tend to show that these paths concentrate carriers and exhibit Coulomb blockade phenomenon. Finally, the absorption cross section is calculated theoretically to obtain the generation rate under illumination. It is similar to the bulk silicon one. And a method employing a Kelvin probe microscope is described to characterize the carrier lifetime, namely the recombination rate. The results thus obtained are consistent with other experimental technics.
|
Page generated in 0.0412 seconds