• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 29
  • 8
  • 6
  • 4
  • 3
  • 1
  • Tagged with
  • 170
  • 170
  • 35
  • 32
  • 32
  • 25
  • 24
  • 19
  • 19
  • 19
  • 18
  • 16
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Influência da adição de diferentes oligômeros poliédricos de silsesquioxano (POSS) incorporados na resina epóxi no desempenho à corrosão em substrato de aço de baixa liga

Longhi, Marielen 09 May 2016 (has links)
A resina epóxi é uma das matrizes mais empregadas na produção de compósitos e revestimentos. Destaca-se no grupo dos materiais termorrígidos devido à facilidade de processamento, suas propriedades mecânicas e à estabilidade térmica. Propriedades como resistência à temperatura e flexibilidade têm sido sistematicamente modificadas pelo uso de diferentes materiais, como argilominerais e, mais recentemente, oligômeros poliédricos de silsesquioxano – POSS, aplicados em matrizes epóxi. Os oligômeros poliédricos de silsesquioxano (POSS) usados na preparação de nanocompósitos termorrígidos têm sido estudados na obtenção de materiais híbridos capazes de suportar temperaturas mais elevadas, promover aumento de propriedades mecânicas e melhorar propriedades de superfície como, por exemplo, a hidrofobicidade do polímero. Os grupos funcionais mais comuns utilizados na preparação de nanocompósitos com resina epóxi são aminas, álcoois e grupos epóxi. A funcionalidade da nanogaiola é importante, uma vez que um termorrígido formado por uma microestrutura reticulada apresente uma microestrutura tridimensional que pode interagir em qualquer direção formando ligações ou interagindo na interface das gaiolas inseridas. Nesse contexto, foi avaliado a influência da adição de três diferentes oligômeros poliédricos de silsesquioxano – POSS (Glicidilisobutil-POSS, Triglicidilisobutil-POSS e Glicidil-POSS), em duas diferentes concentrações 2,5% e 5% (m/m), em resina epoxídica, no comportamento morfológico, mecânico e eletroquímico quando aplicados em aço de baixa liga. Com adição de POSS à resina epóxi, observou-se um aumento na rugosidade e hidrofobicidade do revestimento, além de se obter uma maior resistência à termoxidação e um aumento nos valores de temperatura de transição vítrea do material em comparação com a amostra de resina epóxi. Dentre os sistemas estudados, a amostra contendo Glicidilisobutil-POSS (POSSmono) apresentou os melhores resultados em relação à resistência à corrosão, promovendo um aumento nos valores de ângulo de contato e na impedância eletroquímica. No quesito dispersão na matriz polimérica, o Glicidil-POSS (POSSocta) apresentou uma dispersão ineficiente com a formação de aglomerados, o que hipoteticamente influenciou no seu baixo desempenho no comportamento eletroquímico em relação aos demais sistemas. / The epoxy resin is one of the matrices most used in manufacturing composites and coatings. It is highlighted in the group of thermosetting materials due to good processability, mechanic behavior and thermal stability. Properties as thermal resistance and flexibility have been systematically modified by the use of different materials, as clays and, more recently, polyhedral oligomeric silsesquioxanes – POSS, applied in epoxy matrices. The polyhedral oligomeric silsesquioxanes (POSS) in thermosetting nanocomposites have been studied in hybrid materials able to support higher temperatures, promoting increase of mechanic properties and improving surface properties such as, for example, the hydrophobicity of the polymer. The most common functional groups used to preparing nanocomposites with epoxy resin are amines, alcohols and epoxy groups. The nanocage functionality is important, once a thermosetting formed by a reticulated microstructure presents a three-dimensional microstructure that can interact in any direction, making bonds or interacting on the interface of the inserted cages. In this context, it was evaluated the influence of three different polyhedral oligomeric silsesquioxanes – POSS (Glycidylisobutyl-POSS, Triglycidylisobutyl-POSS and Glycidyl-POSS), at two different contents 2.5% and 5% (w/w), in epoxy resin, in the morphological, mechanic and electrochemical behavior when applied on low alloy steel. Adding POSS in the epoxy resin, it was observed an increase in roughness and hydrophobicity of the coating. Moreover, it was reached a higher thermal oxidation resistance and an increase in the values of glass transition temperature of the material, regarding the epoxy resin sample. Among the studied systems, the sample containing Glycidylisobutyl-POSS (POSSmono) showed the best results, regarding the corrosion resistance. The addition of POSSmono in the epoxy resin promoted an increase of contact angle and electrochemical impedance values. Regarding the dispersion in the polymeric matrix, the Glycidyl-POSS (POSSocta) presented an inefficient dispersion, with formation of agglomerates, which hypothetically influenced in its low performance in the electrochemical behavior, regarding the other systems.
112

The study of bionanocomposite thin films and their crystal growth behaviour

Malwela, Thomas 08 October 2014 (has links)
Ph.D. (Chemistry) / This study focuses on the morphology and crystal-growth behaviour of polyactide (PLA)-based blends and blends modified with organoclay thin films. The study further examined the effect of blending and the incorporation of organoclays on the enzymatic degradation behaviour. Thin films of unmodified and nanoclay-modified PLA/poly(butylene succinate) (PBS) blends were cast on a glass substrate by a spin coater, while thin films of biodegradable PLA/poly[(butylene succinate)-coadipate] PBSA blends and blends containing organoclays were cast on a silicon (100) wafer substrate. The morphology and crystal growth behaviour of the thin films crystallized at different temperatures were examined with an atomic force microscopy (AFM) equipped with a hot-stage scanner. In PLA/PBS blend thin films, AFM images showed that the size of the dispersed PBS phase was influenced by C30B clay loading on the blends. The dispersed size reduced on the addition of C30B clay up to 2 wt%, beyond which, dispersed size began to increase. Transmission electron microscopy studies indicated that this behaviour was due to the preferential location of silicates in the PBS phase than in the PLA phase. For thin films annealed at 60 °C, the additi on of organoclays to the blend quenched the growth of edge-on lamellae. The crystalline morphologies at 120 °C were dominated by edge-on lamellae grown, around the PBS phase to form spherulites. Morphologies of thin films crystallized at 120 °C from melt were dominated by the flat-on lamellae, while those crystallized at 70 °C from melt were dominated by the edge-on lamellae. In the case of PLA/PBSA blend thin films, the results indicated that the size and distribution of the dispersed phase were directly related to the blend composition. The crystal growth behaviours indicated the presence of homogeneous and heterogeneous nucleations, and the nature of nucleation was directly related to the blend ratio and the temperature at which crystallization occurred. Therefore, this study will facilitate the understanding of crystal growth behaviour in a confined environment and will enable the modulation of the blend properties.
113

Síntese e caracterização de nanocompósitos de poli(estireno) com materiais lamelares - hidróxido duplo lamelar e hidroxissal lamelar - via polimerização in situ / Synthesis and characterization of poly(styrene) layered materials nanocomposites - layered double hydroxide and layered hydroxide salt - via in situ polimerization

Botan, Rodrigo, 1982- 24 August 2018 (has links)
Orientador: Liliane Maria Ferrareso Lona / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-24T08:44:00Z (GMT). No. of bitstreams: 1 Botan_Rodrigo_D.pdf: 8541673 bytes, checksum: fc88cab0852acd3cb9bf0b6052e4458d (MD5) Previous issue date: 2014 / Resumo: Ao longo da última década, nanocompósitos poliméricos vêm atraindo grande atenção da comunidade científica e industrial. Este fato se deve à notável melhora em inúmeras propriedades destes novos materiais, proporcionado pelo uso de uma pequena quantidade de nanoreforços. Entre as propriedades melhoradas é possível citar com maior destaque as propriedades mecânicas e térmicas. Buscando alcançar melhores propriedades para o poli(estireno) (PS), o objetivo deste trabalho foi o de sintetizar nanocompósitos in situ de PS com hidróxidos duplos lamelares (HDLs) e hidroxissal lamelar (HSL). Para isto, foram sintetizados dois tipos de HDLs e um tipo de HSL, os HDLs foram modificados com ácido láurico, ácido palmítico e uma mistura destes dois ácidos e o HSL foi modificado com ácido palmítico. Os HDLs e HSL sintetizados foram caracterizados por difração de raios x (DRX), microscopia eletrônica de varredura (MEV), espectroscopia no infravermelho por transformada de Fourier (FTIR) e análise termogravimétrica (TGA). Os nanocompósitos foram sintetizados in situ por polimerização em massa e foram caracterizados por DRX, FTIR, TGA, calorimetria exploratória diferencial (DSC), microscopia eletrônica de transmissão (MET), ensaio de flexão, análise da fratura e teste de flamabilidade. Os resultados obtidos demostram que estes novos nanocompósitos foram sintetizados, apresentando, de uma forma geral, uma boa interação polímero ¿ reforço com morfologia variando da intercalada/esfoliada a esfoliada. A estabilidade térmica e, principalmente, a propriedade mecânica apresentaram ganhos significativos em todos os materiais estudados quando comparadas com o polímero puro, fato que possibilita uma vasta gama de aplicação destes novos materiais em diversos campos da pesquisa e engenharia / Abstract: Over the past decade, polymer nanocomposites have attracted interest, both in the industry and in the academia. They often exhibit remarkable improvement in their properties when compared with neat polymer or conventional micro and macrocomposites using low levels of reinforcements, usually maximum 5% by weight. The improvements mainly include mechanical, thermal, and physical properties. Seeking to achieve better properties for poly(styrene) (PS), the purpose of this work was to in situ synthesize PS with layered double hydroxides (LDHs) and layered hydroxide salt (LHS) nanocomposites. Thus, two types of LDH and a type of LHS was synthesized, the LDHs were modified with lauric acid, palmitic acid and a mixture of both, and LHS was modified with palmitic acid. The LDHs and LHS synthesized were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The nanocomposites were synthesized by in situ bulk polymerization and were characterized by XRD, FTIR, TGA, differential scanning calorimetry (DSC), transmission electron microscopy (TEM), bend test, fracture analysis and flammability test. The obtained results show that indeed these new nanocomposites were synthesized. These nanocomposites have in general good interaction polymer ¿ reinforcement with morphology varying from intercalated/exfoliated to exfoliated. The thermal stability and mechanical property mainly, showed significant improvement in all materials studied, when compared with the neat polymer, a fact that enables a wide range of application of these new materials in various fields of research and engineering / Doutorado / Engenharia Química / Doutor em Engenharia Química
114

Fotoatividade de heterojunções de SrTiO3, TiO2 e CaO /

Coleto, Ubirajara Junior January 2019 (has links)
Orientador: Leinig Antônio Perazolli / Resumo: O presente trabalho buscou desenvolver fotocatalisadores cerâmicos por meio da produção de heterojunções inovadoras à base de SrTiO3, TiO2 e CaO, que tiveram suas fotoatividades avaliadas pela descoloração do corante Rodamina B (RhB) e pela obtenção de biodiesel, utilizando luz ultravioleta. As amostras TiO2, CaO e SrTiO3 foram obtidas pelo método de precursores poliméricos, método Pechini, e as heterojunções TiO2/SrTiO3, CaO/SrTiO3 e CaO/CaTiO3 foram preparados por rota sol-gel. Após síntese e tratamento térmico, as amostras foram caracterizadas por difração de Raios-X (DRX) para verificar as fases cristalinas formadas, por espectroscopia de infravermelho com transformada de fourier (FT-IR) e termogravimetria/análise térmica diferencial (TG/DTA) para verificar e quantificar a formação de CaCO3 e Ca(OH)2, por espectroscopia de refletância difusa (UV/Vis/NIR DRS) para determinar a energia de band gap, por Brunauer, Emmett e Teller (B.E.T.) para determinar a área específica, por microscopia eletrônica de varredura acoplada a espectroscopia de energia dispersiva de Raios-X (FE-SEMEDS) para estimar o tamanho das partículas, sua morfologia e composição elementar, por espectroscopia de fotoelétrons excitados por Raios-X (XPS) para conhecer a composição elementar presente na superfície da amostra e seus estados de oxidação, por espectroscopia de fotoluminescência (PL) para verificar a formação de defeitos estruturais, por microscopia eletrônica de transmissão de alta resolução (HRTE... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The present work aimed to develop ceramic photocatalysts through the production of innovative SrTiO3, TiO2 and CaO based heterojunctions, which had their photoactivities evaluated by the discoloration of Rhodamine B (RhB) dye and by obtaining biodiesel using UV light. TiO2, CaO and SrTiO3 samples were obtained by polymeric precursor method, Pechini method, and TiO2/SrTiO3, CaO/SrTiO3 and CaO/CaTiO3 heterojunctions were prepared by sol-gel route. After synthesis and heat treatment, the samples were characterized by X-ray diffraction (XRD) to verify the crystalline phases formed, fourier transform infrared spectroscopy (FT-IR) and thermogravimetry/differential thermal analysis (TG/DTA) to verify and quantify the formation of CaCO3 and Ca(OH)2, diffuse reflectance spectroscopy (UV/Vis/NIR DRS) to determine band gap energy, Brunauer, Emmett e Teller (B.E.T.) to determine specific area, field emission scanning electron microscopy coupled X-ray dispersive energy spectroscopy (FE-SEM-EDS) to estimate particle size, morphology and elemental composition, X-ray photoelectron spectroscopy (XPS) to know the elemental composition present on the sample surface and oxidation states, photoluminescence spectroscopy (PL) to verify the formation structural defects, high resolution transmission electron microscopy (HRTEM) to confirm the formation of heterojunction. Rhodamine B discoloration was measured by UV/Vis molecular absorption spectroscopy and the conversion of oil to biodiesel was analyz... (Complete abstract click electronic access below) / Doutor
115

Thin film piezoelectric elements for active devices

McGinn, Christine January 2022 (has links)
Piezoelectric materials have had widespread application since their discovery both in bulk crystal and thin film applications, but thin film piezoelectrics have unlocked key applications like acoustic filtering and energy harvesting. [1] This work investigates a small subset including energy harvesting, multifunctional nanocomposites, acoustic wave resonators, and gravimetric and infrared sensing. Electroactive polymers such as PVDF-TrFE have a unique combination of characteristics including a high dielectric constant, piezoelectricity, pyroelectricity, biocompatibility, and mechanical flexibility. [2, 3, 4, 5, 6] This unique combination gives them a wide potential application space including energy harvesting, biomedical devices, drug delivery, flexible electronics, and tactile sensing. [7] In recent years, there has been significant work investigating potential composite materials based on electroactive polymers and nanoparticles. [8] This interest has been primarily driven by the increased commercial availability, tunability, and available functionalities of nanoparticles. In this work, nanocomposites of PVDF-TrFE, barium titanate (BTO), and europium barium titanate (EBTO) are investigated. EBTO is an optically active material which can add optical functionality to these active polymer composites. [9] Acoustic wave resonators including bulk acoustic wave resonators and surface acoutstic wave resonators are widely used for front end filtering technologies, but their high quality factor, small size, and low power makes them good candidates for sensing technologies. [10, 11, 12] In this work, FBARs are applied to VOC sensing and infrared sensing sucessfully.
116

Characterisation of the structural properties of ECNF embedded pan nanomat reinforced glass fiber hybrid composites

Bradley, Philip 11 October 2016 (has links)
A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering. Johannesburg, May 2016 / In this study, hybrid multiscale epoxy composites were developed from woven glass fabrics and PAN nanofibers embedded with short ECNFs (diameters of ~200nm) produced via electrospinning. Unlike VGCNFs or CNTs which are prepared through bottom-up methods, ECNFs were produced through a top-down approach; hence, ECNFs are much more cost-effective than VGCNFs or CNTs. Impact absorption energy, tensile strength, and flexural strength of the hybrid multiscale reinforced GFRP composites were investigated. The control sample was the conventional GFRP composite prepared from the neat epoxy resin. With the increase of ECNFs fiber volume fraction up to 1.0%, the impact absorption energy, tensile strength, and flexural strength increased. The incorporation of ECNFs embedded in the PAN nanofibers resulted in improvements on impact absorption energy, tensile strength, and flexural properties (strength and modulus) of the GFPC. Compared to the PAN reinforced GRPC, the incorporation of 1.0% ECNFs resulted in the improvements of impact absorption energy by roughly 9%, tensile strength by 37% and flexural strength by 29%, respectively. Interfacial debonding of matrix from the fiber was shown to be the dominant mechanism for shear failure of composites without ECNFs. PAN/ECNFs networks acted as microcrack arresters enhancing the composites toughness through the bridging mechanism in matrix rich zones. More energy absorption of the laminate specimens subjected to shear failure was attributed to the fracture and fiber pull out of more ECNFs from the epoxy matrix. This study suggests that, the developed hybrid multiscale ECNF/PAN epoxy composite could replace conventional GRPC as low-cost and high-performance structural composites with improved out of plane as well as in plane mechanical properties. The strengthening/ toughening strategy formulated in this study indicates the feasibility of using the nano-scale reinforcements to further improve the mechanical properties of currently structured high-performance composites in the coming years. In addition, the present study will significantly stimulate the long-term development of high-strength high-toughness bulk structural nanocomposites for broad applications. / MT2016
117

Directional Nanoparticle Organization in Semicrystalline Polymers: Mechanisms and Quantification Methodologies

Krauskopf, Alejandro Ariel January 2022 (has links)
The commodity plastics industry is dominated by semicrystalline polymers, which generally display high toughness relative to amorphous polymers but typically suffer from low strength and modulus. Researchers have shown that the addition of nanoparticles (NPs) to these semicrystalline matrices can result in materials with enhanced properties relative to the neat systems. The arrangement of these NPs into anisotropic sheet-like structures appears to endow these processed polymer nanocomposites (PNCs) with further improved mechanical properties relative to PNCs where the NP morphology remains well-dispersed. However, there is currently no appropriate methodology in the literature with which to quantitatively correlate the extent of NP organization to the enhancement in mechanical properties. Additionally, isothermal crystallization (the current processing technique of choice for this class of PNCs) results in numerous grain boundaries. While entanglements across grains can limit issues associated with failure, grain boundaries can also be undesirable for the modulus of the material. In this dissertation, we methodically investigate several key topics related to the above. We first present our modifications to the correlation function approach of Strobl and Schneider, which was originally developed to characterize the structural parameters of neat semicrystalline polymers and their blends, that allow us to apply it to isothermally crystallized poly(ethylene oxide) (PEO) PNCs. We select PEO due to the relative ease with which mobile silica NPs can be dispersed within the matrix. Next, we characterize these materials using the generally used large beam size typical of laboratory-scale and synchrotron X-ray scattering instruments. In this study, we show that our adaptations to the correlation function approach allow for the quantitative evaluation of the NP ordering process as a function of isothermal crystallization temperature. The same systems are then characterized with a microfocus synchrotron X-ray scattering beam guided by an autonomous experimentation protocol, which allows for a detailed, granular mapping of the structural parameters of these materials. The much smaller beam reveals spatial morphological heterogeneity in both the neat and PNC systems due to the grain size being on the order of the dimensions of the microbeam as opposed to those of the larger beam. Hence, the combination of the large and microfocus beam provides a comprehensive view of these systems, with varying degrees of granularity. We also find quantitative evidence that demonstrates that NPs organize parallel to the direction of polymer crystal growth, a phenomenon which has previously only been shown in the literature in a qualitative fashion. Having established the physics of the NP ordering process in isothermally crystallized PNC systems, we turn to the zone annealing (ZA) technique as inspiration to approach more uniform, unidirectionally oriented NP morphologies. ZA, which has found extensive use in the production of ultra-pure semiconductors for electronics applications, proceeds by translating a sample at a constant velocity over a well-defined temperature gradient. This directional processing technique has been shown to result in the reduction of grain boundaries when applied to semicrystalline polymers. Since the PNC is a more complicated system than the neat matrix, we first perform studies of zone annealed neat PEO. Our experimental, analytical, and numerical investigations validate a crucial directional crystallization theory proposed by Lovinger and Gryte, who were among the first to apply ZA to semicrystalline polymers; our experimental evidence confirms the existence of a critical ZA velocity (v_crit) below which directional crystallization occurs and above which the process is closer in spirit to isothermal crystallization. Having determined the mechanism driving the ZA of neat PEO, we then turn to the ZA of PEO-based PNCs. Through our studies, we find that it is imperative to minimize or eliminate sample flow during the procedure, as otherwise the NPs order in disparate directions. Our subsequent redesign of the sample preparation protocol, such that the material is pressed between two glass coverslips separated by Teflon spacers, leads to extensive unidirectional organization of NPs that persists throughout the film at slow enough ZA velocities, as evidenced from X-ray scattering experiments. Hence, this dissertation systematically examines questions relevant to understanding how to obtain uniform, unidirectional NP organization in semicrystalline PNCs, with relevance to applications requiring enhanced properties.
118

Calibration of Alumina-epoxy Nanocomposites Using Piezospectroscopy for the Development of Stress-sensing Adhesives

Stevenson, Amanda L. 01 January 2011 (has links)
A non-invasive method to quantify the stress distribution in polymer-based materials is presented through the piezospectroscopic calibration of alumina-epoxy nanocomposites. Three different alumina volume fraction nanocomposites were created and loaded under uniaxial compression in order to determine the relationship between applied stress and the frequency shift of the R-lines produced by alumina under excitation. Quantitative values for six piezospectroscopic coefficients were obtained which represent the stress-sensing property of the nanocomposites. The results were applied to an alumina-filled adhesive in a single lap shear configuration demonstrating the capability of the technique to monitor R-line peak positions with high spatial resolution and assess the stress distribution within the material prior to failure. Additionally, particle dispersion and volume fraction were confirmed with spectral intensities, introducing a novel experimental method for the assessment of quality in manufacturing of such nanocomposites. Results were further used to initiate studies in determining the load transfer to the nanoparticles and assessing the fundamental driving mechanisms.
119

Polymer Nanocomposite Membranes for Selective Ion Transport Applications

Tekell, Marshall Clark January 2024 (has links)
Soft materials are indispensable components of energy storage and conversion technologies necessary for the renewable energy transition. Two key examples are electrolytes used in solid-state batteries and ion-exchange membranes used in electrolysis and electrodialysis. The figures of merit for these applications are often summarized using upper-bound relationships, which define the best possible combination of performance metrics for a given material. A promising route to break the upper-bound and to improve upon the state-of-the-art is engineering materials at the nanoscale. Two commonly employed strategies are the use of block copolymers and polymer nanocomposites. In the former, the sequence of different monomers along the backbone of the polymer chain is varied; in the latter, ceramic nanoparticles are mixed with polymers and processed to achieve different dispersion states. In both of these classes of materials, the self-assembly of molecular and colloidal components controls the structure and function of the resulting material. This dissertation investigates these structure-property relationships in model soft nanomaterials, namely colloids, polymer nanocomposites, and ion-exchange membranes, using experiments, molecular dynamics simulations, and theory. The dissertation can be divided into three parts. The first, Chapters 2 and 3, investigates polymer and polymer nanocomposite electrolytes for applications in solid-state Li batteries. Chapter 2 investigates the coarse-graining and force field parameterization of polymer electrolytes for molecular dynamics simulations. Chapter 3 reports the experimental characterization of polymer nanocomposite electrolytes, with a key focus on understanding how the particle dispersion state affects the ionic conductivity and mechanical reinforcement of the composite. The second part, Chapters 4 and 5, studies fundamental structure-property relationships in two types of polymer nanocomposites. In Chapter 4, the surface chemistry of hydrophilic silica nanoparticles is altered to promote miscibility in organic solvents and in semicrystalline polymers. In these "bare" nanocomposites, the particles are stabilized against aggregation via the adsorption of a polymer bound layer, which is quantitatively studied via small angle X-ray scattering. In Chapter 5, the surface-modified particles are densely grafted with polymer chains via surface-initiated polymerization to obtain matrix-free polymer grafted nanoparticle films. The collective dynamics of the nanoparticle cores in these self-supporting films, where all of the polymer is grafted to the particle surface, is then measured using X-ray photocorrelation spectroscopy at a variety of temperatures. In Chapters 6 and 7, random copolymer chemistries are used to create cation- and anion-exchange membranes, respectively, with controlled ion-exchange capacity and swelling behavior. The key finding of Chapter 6 is that water-lean cation-exchange membranes selectively transport ions with low free energies of hydration, allowing the design of specific-ion selective electrodialysis stacks for Li+ recovery applications. The analogous properties of anion-exchange membranes are suggested as an avenue for future research.
120

Preparation of polymer-clay nanocomposites via dispersion polymerization using tailor-made polymeric surface modifiers

Nagi, Greesh 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Fully exfoliated polystyrene-clay nanocomposites were prepared via free radical polymerization in dispersion polymerization, in a mixture of ethanol and water. Sodium montomorillonite clay (MMT) was pre-modified using 3-(trimethoxysilyl) propyl methacrylate (MPTMS) before being used in a dispersion polymerization process. The particles obtained were not completely stable and TEM images showed that most of the clay platelets were distributed in the dispersing phase. A second objective included, the preparation of low molecular weight of polystyrene (PS) and amphiphilic block copolymers of poly(styrene-b-2-hydroxyethyl acrylate) (PS-b-PHEA)using reverse iodine transfer polymerization (RITP) living/controlled free radical polymerization.The reaction kinetic profile of the RITP process for styrene and 2-Hydroxyethyl acrylate (HEA) was also studied. The formation of the block copolymer PS-b-PHEA was confirmed by GPC and gradient HPLC. The resulting PS-I and (PS-b-PHEA)-I were chemically modified by dimethylethylamine and triethylamine respectively, ended with PS and PS-b-PHEA has quaternary ammonium end-chain functionality (PS-cationic and (PS-b-PHEA)-cationic). The obtained functional polymers (PS-cationic) and (PS-b-PHEA)-cationic) were then grafted onto MMT via a simple ion-exchange process to offer MMT with polymer chains on the surface (PS-MMT) and (PS-b-PHEA)-MMT). Furthermore, the ability of the interaction ofPS-b-PHEA with MMT by adsorption via several functional groups was also investigated. The third objectiveincluded the use of this new class of pre-modified clay PS-MMT in the preparation of PCNs as stabilizers, the clay particles were encapsulated into PS latexes with a partially exfoliated structure at 100% CEC, upon stoppage of the polymerization process, and the final dispersion found to be stable for up to 5 wt% of clay filler loading. The thermal and thermo-mechanical properties of PS-nanocomposites were found to be dependent on both nanocomposites morphology, and clay loading. (PS-b-PHEA)-MMT was also used as stabilizers in the preparation of PS via dispersion polymerization. PS colloidal particles obtained were found to be armoured by (PS-b-PHEA)-MMT layers, with particles sizes in the micro-size range, with fair stability were obtained for clay loadings up to 5%. Analysis of the structure and thermo-mechanical properties of the resulting PCNs revealed the efficiency of the clay surface pre-modification in stabilizing the system throughout the heterophasic polymerization process.The melt flow properties of final PCNs were found to be strongly dependent on the clay loading, with shift observed from liquid-like viscoelastic to solid-like viscoelastic behaviour as the clay content increased due to percolation of the clay network within the PS matrix taking place upon film formation above Tg. / AFRIKAANSE OPSOMMING: Die eerste doelwit was die voorbereiding van ten volle geëksfolieerde polistireen-klei nanosamestellings deur vrye radikaal polimerisasie in dispersie-polimerisasie, in 'n mengsel van etanol en water. Natrium montmorilloniet klei (MMT) is gemodifiseer deur gebruik te maak van 3-(trimetoksiesiliel) propiel metakrilaat (MPTMS), voordat dit gebruik is in die dispersie-polimerisasie. Die bekomde partikels was nie heeltemal stabiel nie. Transmissie elektronmikroskopie (TEM) resultate het getoon dat die meeste van die klei plaatjies in die dispersie-fase versprei is. Die tweede doelwit was die voorbereiding van polistireen (PS) met 'n lae molekulêre massa, gevolg deur die vorming van amfifiliese blok kopolimere van poli(stireen-b-2-hidroksie-etiel akrilaat) (PS-b-PHEA) met behulp van omgekeerde jodium oordrag polimerisasie (RITP) lewendige/gekontroleerde vrye radikaal polimerisasie. Die reaksie kinetiese profiel van die RITP proses was bestudeer met betrekking tot stireen en 2-hidroksie-etiel akrilaat (HEA). Die vorming van die blok kopolimeer PS-b-PHEA is bevestig deur GPC en gradiënt HPLC. Die gevolglike PS-I en (PS-b-PHEA)-I was chemies gewysig deur onderskeidelik dimetieletielamien en trietielamien, waardeur PS en PS-b-PHEA een kwaternêre ammonium ketting-endfunksionaliteit bekom het (PS-kationies en (PS-b- PHEA)-kationies). Laasgenoemde twee funksionele polimere was toe gekoppel aan MMT deur 'n eenvoudige ioon-ruilingsproses wat MMT met polimeerkettings op die oppervlak (PS-MMT) en (PS-b-PHEA)-MMT) tot gevolg het. Die interaksie van PS-b-PHEA met MMT deur middel van adsorpsie van verskeie funksionele groepe is ook ondersoek. Die derde doel was gerig op die gebruik van hierdie nuwe klas gemodifiseerde klei PS-MMT as stabiliseerders vir die voorbereiding van polimeer-klei-nanosamestellings (PCNs). Die 100% CEC gemodifiseerde klei deeltjies is ge-inkapsuleer in die PS emulsies met 'n gedeeltelik geëksfolieërde struktuur, na afloop van die polimerisasie proses. Die finale dispersie was stabiel tot en met 'n klei inhoud van 5 wt%. Daar is gevind dat die termiese en termo-meganiese eienskappevan die PS-nanosamestellings afhanklik is van beide die morfologie en die klei inhoud. (PS-b-PHEA)-MMT was ook gebruik as stabiliseerder in die voorbereiding van PS deur dispersie polimerisasie. Daar is gevind dat die PS kolloïdale partikels wat verkry is, versterk was deur (PS-b-PHEA)-MMT lae. Partikel groottes was in die mikro-grootte gebied, en voldoende stabiliteit is verkry vir 'n klei inhoud van tot 5%. Analise van die struktuur en die termo-meganiese eienskappe van die bekomde PCNs het getoon dat die vooraf modifisering van die klei oppervlak doeltreffend was in die stabilisering van die sisteem gedurende die heterofase polimerisasie proses. Daar is ook gevind dat die smelt vloei eienskappe van die finale PCNs sterk afhang van die klei inhoud; 'n verskuiwing vanaf vloeistof-agtige viskoelastiese tot vaste-agtige viskoelastiese gedrag is waargeneem soos die klei-inhoud verhoog. Hierdie verskynsel was te danke aan perkolasie van die klei netwerk binne die PS matriks wat plaasvind tydens film vorming by 'n hoër temperatuur as die glasoorgangstemperatuur (Tg).

Page generated in 0.1177 seconds