• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 2
  • 1
  • Tagged with
  • 24
  • 24
  • 11
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Testování antimikrobiálních a antiadhezních vlastnostní nanodiamantových materiálů / Testing of anti-microbial and anti-adhesive properties of nanodiamond materials

Jurková, Blanka January 2015 (has links)
Nanocrystalline diamond (NCD) films possess great mechanical properties (low friction coefficient, high hardness etc.), chemical properties (e.g. low corrosivity or chemical inertness) and good biocompatibility. This makes them perspective materials for protective coatings of medical implants and devices. As bacteria biofilms are often very resistant to antibacterial treatment, materials with anti-bacterial or at least anti-adhesive properties are needed. The interaction of NCD films with bacteria has not been properly examined yet. The aim of this thesis was to introduce and optimize the methods for routine bacterial biofilm cultivation and analysis, use them to investigate the ability of NCD films to inhibit the attachment and biofilm formation of Escherichia coli and correlate it with the NCD surface hydrophobicity. The materials used for the study were hydrogenated NCD (hydrophobic), oxidized NCD (hydrophilic) and uncoated glass. For bacterial biofilm growth, cultivation in six-well plates and continuous cultivation in CDC Bioreactor was used. Several methods were tested for quantitative biofilm detachment and analysis. The putative anti-bacterial properties of NCD material were not confirmed in this work. Higher bacterial attachment to NCD films in comparison to the uncoated glass was...
12

The Neuron-Silicon Carbide Interface: Biocompatibility Study and BMI Device Development

Frewin, Christopher L 28 May 2009 (has links)
Damage to the central nervous system (CNS) leads to the generation of an immune response which culminates with the encapsulation of the damaged area. The encapsulation, known as a glial scar, essentially breaks neural signal pathways and blocks signal transmissions to and from the CNS. The effect is the loss of motor and sensory control for the damaged individual. One method that has been used successfully to treat this problem is the use of a brain-machine interface (BMI) which can intercept signals from the brain and use these signals to control a machine. Although there are many types of BMI devices, implantable devices show the greatest promise with the ability to target specific areas of the CNS, with reduced noise levels and faster signal interception, and the fact that they can also be used to send signals to neurons. The largest problem that has plagued this type of BMI device is that the materials that have been used for their construction are not chemically resilient, elicit a negative biological response, or have difficulty functioning for extended periods of time in the harsh body environment. Many of these implantable devices experience catastrophic failure within weeks to months because of these negative factors. New materials must be examined to advance the future utilization of BMI devices to assist people with CNS damage or disease. We have proposed that two semiconductor materials, cubic silicon carbide (3C-SiC) and nanocrystalline diamond (NCD), which should provide solutions to the material biocompatibility problems experienced by implantable BMI devices. We have shown in this study that these two materials show chemical resilience to neuronal cellular processes, and we show evidence which indicates that these materials possess good biocompatibility with neural cell lines that, in the worst case, is comparable to celltreated polystyrene and, in most cases, even surpasses polystyrene. We have utilized 3C-SiC within an electrode device and activated the action potential of differentiated PC12 cells. This work details our initial efforts to modify the surfaces of these materials in order to improve cellular interaction and biocompatibility, and we examine our current and future work on improving our implantable BMI devices.
13

Thin film acoustic waveguides and resonators for gravimetric sensing applications in liquid

Francis, Laurent A. 01 February 2006 (has links)
The fields of health care and environment control have an increasing demand for sensors able to detect low concentrations of specific molecules in gaseous or liquid samples. The recent introduction of microfabricated devices in these fields gave rise to sensors with attractive properties. A cutting edge technology is based on guided acoustic waves, which are perturbed by events occurring at the nanometer scale. A first part of the thesis investigates the Love mode waveguide, a versatile structure in which a thin film is guiding the acoustic wave generated in a piezoelectric substrate. A systematic analysis of its sensitivity was obtained using a transmission line model generalized to discriminate the rigid or viscous nature of the probed layers. We developed a novel integrated combination of the Love mode device with a Surface Plasmon Resonance optical sensor to quantify the thickness and the composition of soft layers. The electromagnetic interferences in the recorded signal were modeled to determine the phase velocity in the sensing area and to provide new mechanisms for an enhanced sensitivity. The experimental aspects of this work deal with the fabrication, the important issue of the packaging and the sensitivity calibration of the Love mode biosensor. A second part of the thesis investigates nanocrystalline diamond under the form of a thin film membrane suspended to a rigid silicon frame. The high mechanical and chemical resistance of nanocrystalline diamond, close to single-crystal diamond, open ways to membrane based acoustic sensors such as Flexural Plate Wave and thin Film Bulk Acoustic Resonators (FBAR). A novel dynamic characterization of the thin film is reported and the properties of composite FBAR devices including a diamond thin film membrane and a piezoelectric aluminum nitride layer are assessed using the perturbation theory. This study is applied to evaluate the high sensing potential of the first prototype of an actual diamond-based composite FBAR.
14

Thin film acoustic waveguides and resonators for gravimetric sensing applications in liquid

Francis, Laurent A. 01 February 2006 (has links)
The fields of health care and environment control have an increasing demand for sensors able to detect low concentrations of specific molecules in gaseous or liquid samples. The recent introduction of microfabricated devices in these fields gave rise to sensors with attractive properties. A cutting edge technology is based on guided acoustic waves, which are perturbed by events occurring at the nanometer scale. A first part of the thesis investigates the Love mode waveguide, a versatile structure in which a thin film is guiding the acoustic wave generated in a piezoelectric substrate. A systematic analysis of its sensitivity was obtained using a transmission line model generalized to discriminate the rigid or viscous nature of the probed layers. We developed a novel integrated combination of the Love mode device with a Surface Plasmon Resonance optical sensor to quantify the thickness and the composition of soft layers. The electromagnetic interferences in the recorded signal were modeled to determine the phase velocity in the sensing area and to provide new mechanisms for an enhanced sensitivity. The experimental aspects of this work deal with the fabrication, the important issue of the packaging and the sensitivity calibration of the Love mode biosensor. A second part of the thesis investigates nanocrystalline diamond under the form of a thin film membrane suspended to a rigid silicon frame. The high mechanical and chemical resistance of nanocrystalline diamond, close to single-crystal diamond, open ways to membrane based acoustic sensors such as Flexural Plate Wave and thin Film Bulk Acoustic Resonators (FBAR). A novel dynamic characterization of the thin film is reported and the properties of composite FBAR devices including a diamond thin film membrane and a piezoelectric aluminum nitride layer are assessed using the perturbation theory. This study is applied to evaluate the high sensing potential of the first prototype of an actual diamond-based composite FBAR.
15

Nouveaux revêtements multicouches diamantés nanograins sur cermets WC-Co : etude des phénomènes microstructuraux intervenant aux interfaces lors de l'élaboration / New nanocrystalline diamond multilayer coatings on WC-Co substrate : a study of interfacial microstructural phenomena during the CVD process

Faure, Cyril 10 December 2010 (has links)
Du fait de leurs excellentes propriétés mécaniques et de leurs faibles masses spécifiques, l’utilisation des matériaux composites, au sein des structures mécaniques, est en plein essor. Cependant, leur usinage entraine une usure prématurée et aléatoire des outils de coupes en cermet WC-Co. L’origine de cette étude provient de la nécessité de protéger leur surface par un revêtement dur et résistant comme, par exemple, le diamant NCD. Toutefois, le cobalt présent dans le carbure cémenté favorise la formation de graphite au niveau de l’interface avec le film de diamant, ce qui nuit à son adhérence. La méthode retenue afin d’isoler ce métal de la surface a été de réaliser des systèmes interfaciaux multicouches. Ces derniers sont composés d’une barrière de diffusion au cobalt en nitrure de tantale et/ou en nitrure de zirconium et d’une couche favorisant la germination du diamant en acier inoxydable ou en molybdène. Les protocoles de dépôt élaborés au cours de ce travail ont la particularité d’utiliser une polarisation négative et séquencée du substrat durant l’étape de croissance. Cela induit une morphologie originale au revêtement de diamant breveté sous le nom de PyrNCD (Brevet N° :FR0807181). Les objectifs de cette étude sont la compréhension de l’ensemble des mécanismes (influence de la solubilité du carbone sur la germination du diamant, l’effet de la polarisation sur le substrat revêtu et sur la croissance du diamant,…) intervenant durant le dépôt de diamant et l’optimisation du procédé. / The combination of good mechanical properties and low specific mass ensures the increasing use of composite materials to reduce the weight of mechanical structures. However, their machining induces premature and random wear of WC-Co cermet cutting-tools. The origin of this study comes from the necessity to protect cutting-tools surfaces by hard and resistant coatings like NCD diamond. Unfortunately, the cobalt found in these cemented carbides catalyses graphite formation at the interface with the diamond layer and harms the grip of the diamond film. The method used to isolate this metal from the surface has been to form interfacial multilayer systems. These are composed of a tantalum nitride and/or zirconium nitride diffusion barrier for cobalt and a layer promoting the diamond nucleation in molybdenum or stainless steel. The deposit protocols developed during this PhD work have the particularity of using a negative and sequenced substrate bias during the growth stage. This leads to an original morphology of the diamond coating which is patented under the name PyrNCD (International Patent N°: WO/2010/076423). The goal of this study is to understand all the mechanisms (like the impact of the carbon solubility on the diamond nucleation, the effects of negative bias on the coated substrate and the diamond growth,...) occurring during diamond deposition and process optimization.
16

Antibakteriální a antiadhezivní účinky uhlíkových nanomateriálů / Antibacterial and antiadhesive properties of carbon nanomaterials

Budil, Jakub January 2018 (has links)
Increasing interest in industrial and medical applications of carbon nanomaterial leads to the need to examine its interactions with living systems. Nanocrystalline diamond (NCD) films possess high mechanical and chemical stability which, together with its biocompatibility with human cells, enables applications in human body. Some of carbon nanoparticles possess strong antibacterial activity. In this work the effects of NCD with hydrogen, oxygen and fluorine termination deposited on glass and silicone on adhesion of gram-negative bacteria Escherichia coli K-12 in mineral medium is described and the impact of cultivation medium on effects of NCD films is compared. Prior the growth of the E. coli biofilm on NCD films, the method for quantification of biofilm using crystal violet staining and the method for biofilm cultivation in mineral medium were optimised. The properties of NCD film are independent on the base substrate. Hydrogen and fluorine terminated NCD films show antiadhesive properties only in mineral medium but not in complex medium. This is explained by formation of a conditioning film on the surface of the NCD film during cultivation in complex medium. On the other hand, O-NCD film supports bacterial adhesion in both cultivation media. Second part of this thesis is dedicated to carbon...
17

Lokalizované povrchové plazmony: principy a aplikace / Localized Surface Plasmons: Principles and Application

Kvapil, Michal January 2010 (has links)
The diploma thesis deals with plasmonic nanostructures for visible eventually near-infrared region of electromagnetic spectrum. At first, there are discussed basic terms which are necessary for description of plasmonic nanostructures and their properties. Then the resonant properties of gold nanoantennas on a fused silica substrate and in proximity of nanocrystalline diamond are addressed. FDTD simulations are used for an assesment of resonant properties and local electric field enhancement of these nanostructures. Possible manufacturing methods of the antennas and techniques for the measurement of their properties are mentioned at the end of the thesis.
18

Vliv uhlíkových nanostruktur na chování lidských buněk a význam fetálního bovinního séra během buněčné adheze / The effect of carbon nanostructures on human cell behavior and the role of fetal bovine serum in cell adhesion

Verdánová, Martina January 2016 (has links)
Graphene (G) and nanocrystalline diamond (NCD) are carbon allotropes and promising nanomaterials with an excellent combination of their properties, such as high mechanical strength, electrical and thermal conductivity, possibility of functionalization and very high surface area to volume ratio. For these reasons, G and NCD are employed next to electronics in biomedical applications, including implant coating, drug and gene delivery and biosensing. For a fundamental characterization of cell behavior on G and NCD, we studied osteoblast adhesion and proliferation on differently treated G and NCD. Generally, both G and NCD exhibited better properties for osteoblast cultivation than control tissue culture polystyrene. Better cell adhesion but lower cell proliferation were observed on NCD compared to G. The most surprising finding was that hydrophobic G with nanowrinkled topography enhanced cell proliferation extensively, in comparison to hydrophilic and flat G and both NCDs (hydrophobic and hydrophilic) with slightly higher roughness. Promoted cell proliferation enables faster cell colonization of G and NCD substrates, meaning faster new tissue formation which is beneficial in biomedical applications. Furthermore, it was shown that osteoblast adhesion was promoted in the initial absence of fetal bovine...
19

Bio-Nano Interactions : Synthesis, Functionalization and Characterization of Biomaterial Interfaces

Cai, Yixiao January 2016 (has links)
Current strategies for designing biomaterials involve creating materials and interfaces that interact with biomolecules, cells and tissues.  This thesis aims to investigate several bioactive surfaces, such as nanocrystalline diamond (NCD), hydroxyapatite (HA) and single crystalline titanium dioxide, in terms of material synthesis, surface functionalization and characterization. Although cochlear implants (CIs) have been proven to be clinically successful, the efficiency of these implants still needs to be improved. A CI typically only has 12-20 electrodes while the ear has approximately 3400 inner hair cells. A type of micro-textured NCD surface that consists of micrometre-sized nail-head-shaped pillars was fabricated. Auditory neurons showed a strong affinity for the surface of the NCD pillars, and the technique could be used for neural guidance and to increase the number of stimulation points, leading to CIs with improved performance. Typical transparent ceramics are fabricated using pressure-assisted sintering techniques. However, the development of a simple energy-efficient production method remains a challenge. A simple approach to fabricating translucent nano-ceramics was developed by controlling the morphology of the starting ceramic particles. Translucent nano-ceramics, including HA and strontium substituted HA, could be produced via a simple filtration process followed by pressure-less sintering. Furthermore, the application of such materials as a window material was investigated. The results show that MC3T3 cells could be observed through the translucent HA ceramic for up to 7 days. The living fluorescent staining confirmed that the MC3T3 cells were visible throughout the culture period. Single crystalline rutile possesses in vitro bioactivity, and the crystalline direction affects HA formation. The HA growth on (001), (100) and (110) faces was investigated in a simulated body fluid in the presence of fibronectin (FN) via two different processes. The HA layers on each face were analysed using different characterization techniques, revealing that the interfacial energies could be altered by the pre-adsorbed FN, which influenced HA formation. In summary, micro textured NCD, and translucent HA and FN functionalized single crystalline rutile, and their interactions with cells and biomimetic HA were studied. The results showed that controlled surface properties are important for enhancing a material’s biological performance.
20

Nanostructured polymer brushes and protein density gradients on diamond by carbon templating

Hutter, Naima A., Steenackers, Marin, Reitinger, Andreas, Williams, Oliver A., Garrido, Jose A., Jordan, Rainer 03 April 2014 (has links) (PDF)
Micro- and nanostructured polymer brushes on diamond can be directly prepared by carbon templating and amplification of the latent structures by photografting of a broad variety of vinyl monomers such as styrenes, acrylates and methacrylates. Even template structures with lateral dimensions as small as 5 nm can be selectively amplified and defined polymer brush gradients of a variety of functional polymers are realizable by this technique. Furthermore, conjugation with a model protein (GFP) results in protein density gradients of high loading and improved chemical stability. The effective functionalization of chemically and biologically inert diamond surfaces with stable functional polymer brushes, the possibility of structuring by the carbon templating technique and the direct biofunctionalization are crucial steps for the development of diamond based biosensors. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.

Page generated in 0.0698 seconds