• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 9
  • 8
  • 7
  • 4
  • 2
  • 2
  • Tagged with
  • 141
  • 51
  • 36
  • 33
  • 30
  • 22
  • 22
  • 21
  • 20
  • 18
  • 15
  • 14
  • 14
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Fabrication of polymeric composite nanofiber materials and their antibacterial activity for effective wound healing

More, Dikeledi Selinah January 2023 (has links)
D. Tech. (Department of Biotechnology and Chemistry, Faculty of Applied and Computer Sciences), Vaal University of Technology. / The synthesis of Ag and Cu nanoparticles was carried out using the thermal decomposition method in the presence of oleylamine as a capping agent. This method was used because it can produce uniform and monodisperse nanoparticles with controlled size distribution. The nanoparticles synthesized under various conditions were characterized by transmission electron microscopy (TEM), UV/Vis spectroscopy, photoluminescence spectroscopy (PL), and X-ray diffraction (XRD). The effect of precursor concentration on the morphology and size of the nanoparticles was investigated. It was observed that an increase in the precursor concentration resulted in an increase in particle sizes with different morphologies for both Ag and Cu nanoparticles. The increase in particle sizes for Ag nanoparticles was due to Ostwald ripening, while for Cu nanoparticles it was due to agglomeration, as Cu tends to oxidize in the atmosphere, leading to a change in particle size and shape. However, the ability to control and manipulate their physical and chemical properties depends on tuning their size and shape. Therefore, varying the precursor concentration helped in selecting the optimal concentration for this study. The nanoparticles produced were used in another study as fillers or additives for the production of nanofiber composites. The development of nanofibers by electrospinning process has led to potential applications in filtration, tissue engineering scaffolds, drug delivery, wound dressing and etc. The current study is an attempt to fabricate composite nanofibers that can be used as wound dressing material for effective wound healing. The approach involves the blending of two different polymers both being biocompatible and biodegradable were one is a natural polymer and the other is a synthetic polymer. In this study, different weight ratios of CS/PVA blends, Ag/Cu/CS/PVA, Ag/CS/PVA and Cu/CS/PVA composite fibers have been successfully prepared by the electrospinning process. The tip-to-collector distance was kept at 15 cm and the applied voltage was varied from 15 to 25 kV. The effects of the weight ratios applied voltage and the nanoparticles loading on the morphology and diameter of the fibers were investigated. The resultant fibers were characterized using scanning electron microscopy (SEM), XRD, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA) and UV-Vis spectroscopy. The SEM results showed that an increase the amount of chitosan in the CS/PVA blend resulted in a decrease in the fiber diameters while an increase in the voltage from 15 to 25 kV led to a decrease in the fiber diameters. Furthermore, an increase in fiber diameters was observed with irregular morphologies upon addition of Ag/Cu nanoparticles into the blend. The latter changes are perceived to be as a result of an increased conductivity and a higher charge density. The XRD results showed peaks which correspond to Ag in the face centred cubic. Ag peaks are more dominant than Cu peaks in the XRD of the mixed nanoparticles. The FTIR spectra of the Ag/Cu/CS/PVA composite fibers gave almost identical features as the blend. This proves that there was an interaction between CS and PVA polymer due to intermolecular hydrogen bonding. The TGA curves showed no significant effect on the thermal stability of the composite fibers upon addition of different nanoparticles loadings. The absorption spectra of the composite fibers showed an improved optical properties compared to the blend. For Ag and Cu nanoparticles composite fibers it was observed that addition of Ag nanoparticles in the blend resulted in an increase in fiber diameters with uniform morphology whereas for Cu resulted in a decrease in fiber diameters. Both Ag and Cu composite fibers showed an improved optical properties. The effect of CS/PVA, Ag/Cu, Ag, and Cu nanofibers on the selected microorganism (K.pneumoniae, S. aureus, P. aeruginosa, and E.coli) was evaluated using the disk diffusion method. It was observed that Ag/Cu/CS/PVA composite fibers showed greater activity against all microorganisms compared to Ag and Cu composite fibers. The alamar blue and Pierce Lactase dehydrogenase (LDH) assay were used to assess the effect of the blend and the composite fibers on cell viability and cytotoxicity, respectively. The results show that the prepared blend and the composite fibers did not have any toxic effect on human adipose derived stem cells (hADSC). The results also showed that as the concentration of Ag/Cu nanoparticles was increased the viability of the cells also increased after 24 hour incubation. More proliferation was observed in day 1 compared to day 3. The 30/70 blend showed more viable cell compared to the negative control. For Ag and Cu composite fibers the 30/70 CS/PVA blend increased cell proliferation after 3 days with 17% more viable cells compared to the negative control. These results show that the prepared blend with its composite fibers are biocompatible with human (ADSC) and may be suitable for use in biomedical application such as wound dressing.
132

Lokální produkce cytokinů po léčbě poškozeného povrchu oka pomocí kmenových buněk / Local production of cytokines after treatment with stem cells of damaged ocular surface

Kössl, Jan January 2015 (has links)
The damage of ocular surface represents one of the most common causes of decreased quality of vision or even blindness. If the injury is extensive and includes the region of limbus, niche of limbal stem cells (LSC), LSC deficiency occurs and the natural corneal regeneration is stopped. Conjunctival epithelium migrates into the injured area. Neovascularization, local inflammation and corneal opacity occur. Corneal transplantation is an insufficient treatment in such case. If the injury is bilateral, the allogenic limbal graft or LSC transplantation is required. In such cases systemic immunosuppressive drugs with many negative side-effects must be administered. The search for an adequate autologous substitution is important for avoid immunosuppressive medication. Mesenchymal stem cells (MSC) represent a perspective substitution for the reason of their immunomodulatory properties and the capability to differentiate in many cell types. There is possibility to isolate sufficient number of these cells from adipose tissue or bone marrow which are relatively easily accessible. Our goal was to observe local production of cytokines and other molecules which are present in inflammatory reaction after the chemical burn of the murine cornea and after the treatment with stem cells growing on nanofiber scaffold....
133

Příprava a charakterizace moderních krytů ran / Preparation and characterization of modern wound covers

Balášová, Patricie January 2021 (has links)
This diploma thesis is focused on the study of bioactive wound dressings. During the thesis, hydrogel, lyophilized and nanofiber wound dressings were prepared. Hydrogel and lyophilized wound dressings were prepared on basis of two polysaccharides – alginate and chitosan. Nanofiber wound dressings were prepared by spinning polyhydroxybutyrate. All prepared wound dressings were enriched with bioactive substances, which represented analgesics (ibuprofen), antibiotics (ampicillin) and enzymes (collagenase). Into hydrogel and lyophilized wound dressings were all the mentioned active substances incorporated, whereas nanofiber wound dressings were only with ibuprofen and ampicillin prepared. The theoretical part deals with the anatomy and function of human skin. There was explained the process of wound healing and also there were introduced available modern wound dressings. The next chapter of the theoretical part deals with materials for preparing wound dressings (alginate, chitosan, polyhydroxybutyrate) and with active substances, which were used during the experimental part of this thesis. In the theoretical part, the methods of preparation of nanofiber wound dressings and also the methods of cytotoxicity testing used in this work were presented. The first part of the experimental part of this thesis was focused on preparing already mentioned wound dressings. Then, their morphological changes over time and also the gradual release of incorporated active substances into the model environment were monitored. The gradual release of ampicillin was monitored not only spectrophotometrically, but also by ultra-high-performance chromatography. In wound dressings, in which collagenase was incorporated, was also the final proteolytic activity of this enzyme monitored. The effect of the active substances was observed on three selected microorganisms: Escherichia coli, Staphylococcus epidermidis and Candida glabrata. The cytotoxic effect of the active substances on the human keratinocyte cell line was monitored by MTT test and LDH test. A test for monitoring the rate of wound healing – a scratch test – was also performed.
134

Intrinsic Self-Sensing of Pulsed Laser Ablation in Carbon Nanofiber-Modified Glass Fiber/Epoxy Laminates

Rajan Nitish Jain (10725372) 29 April 2021 (has links)
<div>Laser-to-composite interactions are becoming increasingly common in diverse applications such as diagnostics, fabrication and machining, and weapons systems. Lasers are capable of not only performing non-contact diagnostics, but also inducing seemingly imperceptible structural damage to materials. In safety-critical venues like aerospace, automotive, and civil infrastructure where composites are playing an increasingly prominent role, it is desirable to have means of sensing laser exposure on a composite material. Self-sensing materials may be a powerful method of addressing this need. Herein, we present an exploratory study on the potential of using changes in electrical measurements as a way of detecting laser exposure to a carbon nanofiber (CNF)-modified glass fiber/epoxy laminate. CNFs were dispersed in liquid epoxy resin prior to laminate fabrication via hand layup. The dispersed CNFs form a three-dimensional conductive network which allows for electrical measurements to be taken from the traditionally insulating glass fiber/epoxy material system. It is expected that damage to the network will disrupt the electrical pathways, thereby causing the material to exhibit slightly higher resistance. To test laser sensing capabilities, a resistance baseline of the CNF-modified glass fiber/epoxy specimens was first established before laser exposure. These specimens were then exposed to an infra-red laser operating at 1064 nm, 35 kHz, and pulse duration of 8 ns. The specimens were irradiated for a total of 20 seconds (4 exposures each at 5 seconds). The resistances of the specimens were then measured again post-ablation. In this study, it was found that for 1.0 wt.% CNF by weight the average resistance increased by about 18 percent. However, this values varied for specimens with different weight fractions. This established that the laser was indeed causing damage to the specimen sufficient to evoke a change in electrical properties. In order to expand on this result, electrical impedance tomography (EIT) was employed for localization of laser exposures of 1, 3, and 5 seconds on a larger specimen, a 3.25” square plate. EIT was used to measure the changes in conductivity after each exposure. EIT was not only successful in detecting damage that was virtually imperceptible to the human-eye, but it also accurately localized the exposure sites. The post-ablation conductivity of the exposure sites decreased in a manner that was comparable to the resistance increase obtained during prior testing. Based on this preliminary study, this research could lead to the development of a real-time exposure detection and tracking system for the measurement, fabrication, and defense industries.</div>
135

Slow and Stopped Light with Many Atoms, the Anisotropic Rabi Model and Photon Counting Experiment on a Dissipative Optical Lattice

Thurtell, Tyler 10 August 2018 (has links)
No description available.
136

Nanofiber Filter Media for Air Filtration

Raghavan, Bharath Kumar 11 August 2010 (has links)
No description available.
137

Gecko-Inspired Electrospun Flexible Fiber Arrays for Adhesion

Najem, Johnny F. 19 July 2012 (has links)
No description available.
138

Stem Cell Regulation Using Nanofibrous Membranes with Defined Structure and Pore Size

Blake, Laurence A 08 1900 (has links)
Electrospun nanofibers have been researched extensively in the culturing of stem cells to understand their behavior since electrospun fibers mimic the native extracellular matrix (ECM) in many types of mammalian tissues. Here, electrospun nanofibers with defined structure (orientation/alignment) and pore size could significantly modulate human mesenchymal stem cell (hMSC) behavior. Controlling the fiber membrane pore size was predominantly influenced by the duration of electrospinning, while the alignment of the fiber membrane was determined by parallel electrode collector design. Electric field simulation data provided information on the electrostatic interactions in this electrospinning apparatus.hMSCs on small-sized pores (~3-10 µm²) tended to promote the cytoplasmic retention of Yes-associated protein (YAP), while larger pores (~30-45 µm²) promoted the nuclear activation of YAP. hMSCs also displayed architecture-mediated behavior, as the cells aligned along with the fiber membranes orientation. Additionally, fiber membranes affected nuclear size and shape, indicating changes in cytoskeletal tension, which coincided with YAP activity. The mechanistic understanding of hMSC behavior on defined nanofiber structures seeks to advance their translation into more clinical settings and increase biomanufacturing efficiencies.
139

Fabrication of Inorganic Oxide Nanofibers Using Gas Jet Fiber Spinning Process and Their Applications in Photocatalytic Oxidation

GHOSH, MONOJ 16 October 2017 (has links)
No description available.
140

Towards molecular weight-dependent uses of kraft lignin

Tagami, Ayumu January 2018 (has links)
There is growing demand for a more efficient use of polymers that originate from renewable feedstocks due to the depleting supply of fossil fuels, based on economic and environmental reasons. As a result, lignin has attracted renewed interest as a resource for various bioproducts. Lignin is a natural biopolymer with a high carbon content and is composed of aromatic moieties, with a high level of polar functionalities. This makes it a unique precursor for certain high-value applications, such as in biofuels, bioplastics, composite materials, carbon fibers and activated carbons and as a source of phenolic monomers and fine chemicals. Industrial lignins are formed as byproducts of pulping processes (such as kraft, sulfite or alkaline pulping) or result from the biorefining process, where carbohydrates are used for sugar production. Lignin’s intrinsic structure is significantly modified during the processing of lignocellulose, resulting in the formation of more diverse, condensed and less reactive raw materials. Since molecular mass and polydispersity are the most important parameters affecting the chemical reactivity and thermal properties of lignin, additional process steps to improve the quality of crude technical lignins, including kraft lignin, are needed. Solvent extraction is a potentially useful technique for further improving the polydispersity of technical lignins. This work summarizes the impact of solvent fractionation on the chemical structure, antioxidant activity, heating value, and thermal and sorption properties of industrial hardwood and softwood kraft lignins. The purpose was to understand the correlation between certain structural features in the lignin fractions and their properties to select the appropriate solvent combinations for specific applications of lignin raw materials. Four common industrial solvents, namely, ethyl acetate, ethanol, methanol and acetone, in various combinations were used to separate both spruce and eucalyptus kraft lignins into fractions with lower polydispersities. Gel-permeation chromatography analysis was used to evaluate the efficiency of the chosen solvent combination for lignin fractionation. The composition and structure of the lignin material were characterized by elemental analysis, analytical pyrolysis (Py-GC/MS/FID) and 31P NMR spectroscopy. The thermal properties of the lignin samples were studied by thermogravimetric analysis. Proximate analysis data (ash, volatile components, organic matter and fixed carbon) were obtained through the direct measurement of weight changes during the analysis, while the high heating values (in MJ/kg) were calculated according to equations suggested in the literature. The sorption properties of fractionated kraft lignins were studied with respect to methylene blue dye. Additionally, lignin fractions with different molecular weights (and therefore various chemical structures) that were isolated from both softwood and hardwood kraft lignins were incorporated into a tunicate cellulose nanofiber (CNF)-starch mixture to prepare 100% bio-based composite films. The aim was to investigate the correlation between lignin diversity and film performance. The transmittance, density and thermal properties of the films were investigated, as were their mechanical properties, including the tensile stress and Young’s modulus. This part of the study addressed the importance of lignin diversity on composite film performance, which could be helpful for tailoring lignin applications in bio-based composite materials based on the material’s specific requirements.

Page generated in 0.1016 seconds