• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 9
  • 8
  • 7
  • 4
  • 2
  • 2
  • Tagged with
  • 141
  • 51
  • 36
  • 33
  • 30
  • 22
  • 22
  • 21
  • 20
  • 18
  • 15
  • 14
  • 14
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Study and development of electrospun fibers for biotechnology application / Etude et développement de fibres électrofilées pour des applications en biotechnologie

Chaves Vieira Lins, Luanda 19 July 2016 (has links)
Actuellement, le procédé d’électrofilage également appelé electrospinning est une des voies les plus prometteuses permettant le design et le développement de nanofibres polymères poreuses. En effet, cette technique est simple d’utilisation, unique, modulable, à faible coût et est déjà couramment utilisée dans le milieu industriel. De part ces avantages, l’electrospinning fait l’objet d’un engouement grandissant de la recherche académique et industrielle dans plusieurs domaines d’applications tels que ceux de la filtration, la cosmétique, du textile, de l’ingénierie tissulaire et du domaine médical, notamment pour le relargage de molécules actives. De plus, cette technique est applicable sur de nombreux polymères synthétiques ou naturels et il est possible de contrôler de nombreux paramètres tels que la porosité, le diamètre des fibres ou encore la surface accessible. Un des premiers objectifs de cette thèse a été de développer des scaffolds pour le domaine de l’ingénierie des tissus neuronaux afin d’imiter les propriétés biologiques, physiques et mécaniques de la matrice extracellulaire native. Dans un premier temps, l’effet de l’alignement des fibres d’une matrice fluorée (PVDF) biocompatible a été étudié sur le comportement de cellules souches neurales de singe, en particulier les morphologies, l’adhésion cellulaire ainsi que leurs différentiations en cellules gliales ou neuronales. Dans un second temps, des scaffolds bioabsorbables composés de PLA et de PEG ont été synthétisés afin d’étudier l’influence de l’équilibre hydrophile-hydrophobe sur la culture de cellules souches neurales. Et dans une dernière partie, une véritable étude exploratoire a été réalisée afin de développer des textiles intelligents à base de PBAT contenant des curli, protéine bien connue pour sa capacité à chélater des métaux. / Currently, the electrospinning process is also one of the most promising routes for the design and development of polymer fibers. This technique is easy to use, unique, versatile, and low cost, which can be used to create fibers from a variety of starting materials. The structure, chemical and mechanical stability, functionality, and other properties of the fibers can be modified to match end applications. The first goal of this thesis was to develop scaffolds for the field of neural tissue engineering in order to mimic the biological, physical and mechanical properties of the native extracellular matrix. In the first time, the effect of fiber alignment of a biocompatible and fluorinated matrix denoted polyvinylidene fluoride (PVDF) was studied on the behavior of monkey neural stem cells particularly the morphology, cell adhesion and their differentiation in glial or neuronal cells. Secondly, bioabsorbable scaffolds composed of polylactide (PLA) and polyethylene glycol (PEG) polymers were synthesized to investigate the influence of the hydrophilic-hydrophobic balance on the culture of neural stem cells. Finally, an exploratory work was conducted to develop smart textiles based on poly(butylene adipate-co-terephthalate) (PBAT) containing curli as protein, well-known for its ability to chelate metals.
122

Development of Nanocomposites Based Sensors Using Molecular/Polymer/Nano-Additive Routes

Liu, Chang 30 May 2019 (has links)
No description available.
123

Synthesis and Antimicrobial Properties of Silver(I) N-Heterocyclic Carbene Complexes

Melaiye, Abdulkareem M. 23 September 2005 (has links)
No description available.
124

Metal Oxide Nanofibers as Filters, Catalyst and Catalyst Support Structures

Swaminathan, Sneha 05 August 2010 (has links)
No description available.
125

Porosity Characterization of Electrospun Polycaprolactone via Laser Metrology

Liu, Yi-xiao 06 September 2022 (has links)
No description available.
126

ELECTROSPINNING OF NOVEL EPOXY-CNT NANOFIBERS: FABRICATION, CHARACTERIZATION AND MACHINE LEARNING BASED OPTIMIZATION

Pias Kumar Biswas (16553136) 17 July 2023 (has links)
<p>This investigation delineates the optimal synthesis and characterization of innovative epoxy-carbon nanotube (CNT) nanocomposite filaments via electrospinning. Electrospinning thermosetting materials such as epoxy resins presents significant challenges due to the polycationic behavior arising from intermolecular noncovalent interactions between epoxide and hydroxyl groups, resulting in a substantial increase in solution surface tension. In this study, electrospinning submicron epoxy filaments was achieved through partial curing of epoxy via a thermal treatment process in an organic polar solvent, circumventing the necessity for plasticizers or thermoplastic binders. The filament diameter can be modulated to as low as 100 nm by adjusting electrospinning parameters.</p> <p><br></p> <p>Integrating a minimal amount of CNT into the epoxy matrix yielded enhanced structural, electrical, and thermal stability. The CNTs were aligned within the epoxy filaments due to the electrostatic field present during electrospinning. The modulus of the epoxy and epoxy-CNT filaments were determined to be 3.24 and 4.84 GPa, respectively, resulting in a 49% improvement. Epoxy-CNT nanofibers were directly deposited onto carbon fiber reinforced polymer (CFRP) prepreg layers, yielding augmented adhesion, interfacial bonding, and significant mechanical property enhancements. The interlaminar shear strength (ILSS) and fatigue resistance demonstrated a 29% and 27% increase, respectively, under intense stress conditions. Up to 45% of the Barely Visible Impact Damage (BVID) energy absorption was increased. In addition, the strategic incorporation of CNT (multi-walled) networks between the layers of CFRP resulted in a significant increase in thermal and electrical conductivities.</p> <p>This study also introduces a scalable fabrication procedure to address large volume processing, reproducibility, accuracy, and electrospinning safety. Electric fields of the experimental multi-nozzle setups were simulated to elucidate the induced surface charges responsible for the Taylor cone formation of the epoxy-CNT solution droplet on the nozzle tips. Electrospinning parameters were subsequently optimized for the multi-nozzle system and analyzed alongside simulated data to improve stability and synthesize fibers with smaller diameters.</p> <p><br></p> <p>Smaller diameter epoxy-CNT nanofibers proved critical as CNTs maintained alignment within the nanofibers when compared to larger diameter nanofibers. This research examines the impact of effective parameters on the diameter of electrospun epoxy-CNT nanofibers using artificial neural networks (ANNs). Consequently, employing a genetic algorithm (GA) and Bayesian optimization (BO) methods enable accurate prediction of epoxy-CNT nanofiber diameters prior to electrospinning. The presented models could aid researchers in fabricating electrospun thermosetting and thermoplastic scaffolds with specified fiber diameters, thereby tailoring these scaffolds for specific applications.</p>
127

Non-Reciprocal Optical Amplification and Phase Shifts in a Nanofiber-Based Atom-Light Interface and a Precise Lifetime Measurement of the Cesium 5D_{5/2} State

Pucher, Sebastian 15 December 2022 (has links)
Nanophotonische Systeme sind eine leistungsfähige Plattform für die Untersuchung von Licht-Materie-Wechselwirkungen. In solchen Systemen bricht die übliche Beschreibung einer elektromagnetischen Welle als eine Welle, die in Bezug auf ihre Ausbreitungsrichtung transversal polarisiert ist, zusammen. Dies ist auf die Einengung der geführten Lichtfelder zurückzuführen, welche zu einer longitudinalen Komponente der elektromagnetischen Felder führt. In dieser Arbeit nutzen wir dies in Verbindung mit unterschiedlichen Kopplungsstärken von Cäsiumatomen an \sigma^- und \sigma^+ polarisiertes Licht, um das Prinzip neuartiger nicht-reziproker optischer Bauelemente zu demonstrieren. Im ersten Teil dieser Arbeit demonstrieren wir die nicht-reziproke Verstärkung von fasergeführtem Licht mit Hilfe von Raman-Verstärkung durch spinpolarisierte Cäsiumatome, die an die Nanofasertaille eines verjüngten Faserabschnitts gekoppelt sind. Wir zeigen, dass unser neuartiger Mechanismus kein externes Magnetfeld benötigt und dass wir die Richtung der Verstärkung vollständig über den atomaren Spinzustand kontrollieren können. Darüber hinaus nutzen wir die chirale Licht-Materie-Wechselwirkung in unserem System, um einen nicht-reziproken antisymmetrischen optischen Phasenschieber zu realisieren. Diese Ergebnisse tragen zur Etablierung einer neuen Klasse von spin-gesteuerten, nicht-reziproken integrierten optischen Bauelementen bei und können den Aufbau komplexer optischer Netzwerke vereinfachen. In einem weiteren Forschungsprojekt tragen wir zum grundlegenden Verständnis von Atomen bei, indem wir die Lebensdauer eines angeregten Cäsiumzustands präzise messen. Wir messen die Lebensdauer des Cäsium 5D_{5/2} Zustands im freien Raum. Wir finden eine Lebensdauer von 1353(5) ns, die mit einer aktuellen theoretischen Vorhersage übereinstimmt. Unsere Messung trägt dazu bei, eine seit langem bestehende Unstimmigkeit zwischen verschiedenen experimentellen und theoretischen Ergebnissen zu beseitigen. / Nanophotonic systems are a powerful platform for the study of light-matter interactions. In such systems, the common description of an electromagnetic wave as a wave that is transversely polarized with respect to its propagation direction breaks down. This is due to the tight confinement of the guided light fields, which leads to a longitudinal component of the electromagnetic fields. In this thesis, we use this in conjunction with different coupling strengths of cesium atoms to \sigma^- and \sigma^+ polarized light to provide proof-of-principle demonstrations of novel non-reciprocal optical devices. In the first part of this thesis, we demonstrate non-reciprocal amplification of fiber-guided light using Raman gain provided by spin-polarized cesium atoms that are coupled to the nanofiber waist of a tapered fiber section. We show that our novel mechanism does not require an external magnetic field and that it allows us to fully control the direction of amplification via the atomic spin state. Moreover, we use the chiral light-matter interaction in our system to implement a non-reciprocal antisymmetric optical phase shifter. These results contribute to establishing a new class of spin-controlled, non-reciprocal integrated optical devices and may simplify the construction of complex optical networks. In an additional research project, we also contribute to the fundamental understanding of atoms by precisely measuring the lifetime of an excited cesium state. We measure the lifetime of the cesium 5D_{5/2} state in free space. We find a lifetime of 1353(5) ns, in agreement with a recent theoretical prediction. Our measurement contributes to resolving a long-standing disagreement between several experimental and theoretical results.
128

Bio-inspired Stimuli-responsive Mechanically Dynamic Nanocomposites

Shanmuganathan, Kadhiravan 20 July 2010 (has links)
No description available.
129

Aligned and oriented polyaniline nanofibers: frabrication and applications

Chiou, Nan-Rong 21 September 2006 (has links)
No description available.
130

Magneto-Transport and Optical Control of Magnetization in Organic Systems: From Polymers to Molecule-based Magnets

Bozdag, Kadriye Deniz 30 September 2009 (has links)
No description available.

Page generated in 0.0645 seconds