• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Light-atom interaction: mean-field approach and intensity fluctuations / Interação luz-átomo: abordagem de campo médio e flutuações de intensidade

Cottier, Florent André Julien 24 January 2019 (has links)
In this thesis, we investigate the coherent scattering of light propagating in a random medium. We are interested in phenomena like the super- and subradiance and Anderson localization that are related to waves interferences and spatial disorder. However, the fundamental difference between subradiance and Anderson localization still needs to be clarified. This thesis gives new elements for the understanding of these phenomena and we present a new method to observe Anderson localization. A mean-field model that does not contain disorder is developed, and we show that super- and subradiance do not require disorder whereas Anderson localization does. In this theoretical work, the coupling between the light and many atoms is reduced to a coupling matrix between the atoms by tracing over the degrees of freedom of the light, which results in a linear problem for the atomic dipoles. The study of the eigenvalues and eigenmodes of this matrix then allows to determine the super- and subradiant modes, and to probe the Anderson localization phase transition with a scaling analysis. Furthermore, the link to the experiment is realized by showing that the intensity fluctuations present an increase at the localization transition. The system is studied in the steady-state regime when the medium is continuously charged by a laser until reaches a stationary regime, and the decay dynamics, when the laser is switched off, so the cloud releases the energy stored. Finally, we present a preliminary work that shows that the diagonal disorder might be a good strategy to reach Anderson localization. / Nesta tese, investigamos o espalhamento coerente de luz propagando em um meio aleatório. Estamos interessados em fenômenos como superradiância, subradiância e localização de Anderson, os quais estão relacionados com interferências de ondas e desordem espacial. No entanto, as diferenças fundamentais entre subradiância e localização de Anderson ainda precisam ser esclarecidas. Esta tese traz novos elementos na compreensão destes fenômenos e apresentamos um novo método para observar a localização de Anderson. Neste trabalho teórico, estudamos os autovalores e os automodos de uma matriz de acoplamento que permite extrair modos super- e subradiantes, e exibem uma transição de fase de localização de Anderson através de uma análise de escalamento. Além disso, a conexão com o experimento é feita através da intensidade irradiada pela nuvem em todas as direções. Distinguimos dois casos: o regime de estado estacionário, quando o meio é continuamente excitado por um laser e alcança um regime estacionário; e o caso dinâmico, onde o laser é desligado e a nuvem libera a energia armazenada. Desenvolvemos um modelo de campo médio que não inclui desordem, e mostramos que super- e subradiância não precisam da desordem para existir, ao contrário da localização de Anderson. Mostramos também que podemos observar uma transição de fase de localização de Anderson na estatística da intensidade. Finalmente, apresentamos um trabalho preliminar que mostra que a desordem diagonal pode ser uma boa estratégia para alcançar a localização de Anderson.
2

Interaction lumière-atomes : approche de champ moyen et fluctuations d’intensité / Light-atom interaction : mean-field approach and intensity fluctuations

Cottier, Florent 24 January 2019 (has links)
Dans cette thèse, nous étudions la diffusion cohérente de la lumière se propageant dans un milieu désordonné. Nous nous intéressons à des phénomènes tels que la super- et sousradiance et la localisation d’Anderson qui sont liées aux interférences et au désordre spatial. Cependant, la différence fondamentale entre la sousradiance et la localisation d'Anderson doit encore être clarifiée. Cette thèse donne de nouvelles idées pour la compréhension de ces phénomènes et nous présentons une nouvelle méthode pour observer la localisation d'Anderson. On développe un modèle à champ moyen qui ne contient pas de désordre, et nous montrons que super- et sousradiance ne nécessitent pas de désordre contrairement à la localisation d’Anderson. Dans ce travail théorique, le couplage entre la lumière et les atomes est réduit à une matrice de couplage entre les atomes en calculant la trace sur les degrés de liberté de la lumière, ce qui nous amène à un problème linéaire pour les dipôles atomiques. L'étude des valeurs propres et des modes propres de cette matrice permet de déterminer des modes super- et sousradiant, et de sonder la transition de phase de localisation avec une scaling analysis. De plus, le lien avec l'expérience est fait en montrant que les fluctuations de l’intensité augmentent à travers la transition de localisation. Le système est étudié en régime stationnaire, quand le milieu est continûment chargé par un laser et que celui-ci atteint l’équilibre, et en dynamique, quand le laser est éteint et que le milieu se décharge de l’énergie stockée. Enfin, nous présentons un travail préliminaire qui montre que le désordre diagonal peut être une bonne stratégie pour atteindre la localisation d’Anderson. / In this thesis, we investigate the coherent scattering of light propagating in a random medium. We are interested in phenomena like the super- and subradiance and Anderson localization that are related to waves interferences and spatial disorder. However, the fundamental difference between subradiance and Anderson localization still needs to be clarified. This thesis gives new elements for the understanding of these phenomena and we present a new method to observe Anderson localization. A mean-field model that does not contain disorder is developed, and we show that super- and subradiance do not require disorder whereas Anderson localization does. In this theoretical work, the coupling between the light and many atoms is reduced to a coupling matrix between the atoms by tracing over the degrees of freedom of the light, which results in a linear problem for the atomic dipoles. The study of the eigenvalues and eigenmodes of this matrix then allows to determine the super- and subradiant modes, and to probe the Anderson localization phase transition with a scaling analysis. Furthermore, the link to the experiment is realized by showing that the intensity fluctuations present an increase at the localization transition. The system is studied in the steady-state regime when the medium is continuously charged by a laser until reaches a stationary regime, and the decay dynamics, when the laser is switched off, so the cloud releases the energy stored. Finally, we present a preliminary work that shows that the diagonal disorder might be a good strategy to reach Anderson localization.
3

Super- et sous-radiance dans un nuage dilué d'atomes froids / Super- and subradiance in a dilute cloud of cold atoms

Oliveira de Araujo, Michelle 11 December 2018 (has links)
Le problème de l'interaction de N atomes avec un faisceau laser et les modes du vide peut donner lieu à de nombreux phénomènes intéressants concernant l’émission spontanée de la lumière et sa propagation dans l’échantillon. Les effets coopératifs, par exemple, tels que la super- et la sous-radiance, sont des effets liés à la cohérence créée entre les atomes lorsqu'un photon est émis spontanément par un seul atome excité. La super-radiance peut être définie comme le renforcement de l'émission spontanée due à une interférence constructive de la lumière diffusée. Son homologue, la sous-radiance, est le piégeage d'une partie de la lumière restante en raison d'interférences destructives. Dans les atomes froids, certains travaux théoriques antérieurs prédisent et caractérisent ces deux effets coopératifs dans un nuage atomique large et diluée, dans le régime des faibles intensités et à grands désaccords du laser incident. Le modèle théorique est un modèle de dipôles couplés pour atomes à deux niveaux pilotés par un champ de faible intensité et dans l'approche scalaire. L'expérience consiste à mesurer les taux de d’décroissance super- et sous-radiants à partir de l’intensité temporelle émise après la coupure du laser incident en régime stationnaire. Notre schéma expérimental consiste en un piège magneto-optique d’atomes de rubidium 87 à grandes épaisseurs optiques à résonance. Un faisceau sonde excite les atomes proches de la raie D2. L’intensité émise est détectée par un détecteur de photons uniques dépourvu d’afterpulsing et une procédure d’étalonnage nous permet de déterminer l’épaisseur optique résonante du nuage et sa température. Dans ce travail, nous rapportons l’observation expérimentale de la super- et sous-radiance dans un grand nuage d’atomes froids. Pour la sous-radiance, le résultat principal est l’évolution linéaire du temps caractéristique avec l’épaisseur optique résonante du nuage et son indépendance du désaccord. Pour la super-radiance, on observe la super-radiance en dehors de la direction vers l’avant. Nous vérifions la validité de nos interprétations avec les prédictions du modèle de dipôles couplés. Finalement, nous discutons l’interaction entre la sous-radiance et le piégeage de radiation, ainsi que des prévisions théoriques concernant : la configuration d’un nuage phasé, pour contrôler l’émission de l’amplitude sousradiante ; et les effets de température, où la sous-radiance s’avère robuste dans une large gamme de températures. / The problem of the interaction of N atoms with a laser beam and vacuum modes can give rise to many interesting phenomena concerning the spontaneous emission of light and its propagation in the medium. The cooperative effects, for example, such as superadiance and subradiance, are effects related to the coherence created between the atoms when a photon is emitted spontaneously by a single excited atom. Superradiance can be defined as the enhancement of the spontaneous emission due to constructive interference of the scattered light. Its counterpart, subradiance, is the trapping of some remaining light due to destructive interference. In cold atoms, some previous theoretical works predict and characterize these two cooperative effects in a large and diluted atomic cloud, in the regime of low intensities and large detunings of the incident laser. The theoretical model is a coupled-dipole model for two-level atoms driven by a low-intensity field and in the scalar approach. The experiment consists in measuring the super- and subradiant decay rates from the temporal emitted intensity after the switch off of the incident laser in the steady state. Our experimental setup consists in a magneto-optical trap of rubidium 87 atoms at large resonant optical thicknesses. A probe beam excites the atoms close to the D2 line. The intensity emitted is detected by a single photon detector with no afterpulsing and a calibration procedure allows us to determine the resonant optical thickness of the cloud and its temperature. In this work, we report the experimental observation of super- and subradiance in a large cloud of cold atoms. For subradiance, the main result is the linear evolution of the characteristic time with the resonant optical thickness of the cloud and its independence of the detuning. For superradiance, we observe superradiance out of the forward direction. We verify the validity of our interpretations with the predictions of the coupled-dipole model. Finally, we discuss the interplay of subradiance and radiation trapping, as well as theoretical predictions for: a setup of a phased cloud, to control the subradiant amplitude emission; and temperature effects, where subradiance is shown to be robust in a large range of temperatures.
4

Slow and Stopped Light with Many Atoms, the Anisotropic Rabi Model and Photon Counting Experiment on a Dissipative Optical Lattice

Thurtell, Tyler 10 August 2018 (has links)
No description available.
5

Wellenleiterquantenelektrodynamik mit Mehrniveausystemen

Martens, Christoph 18 January 2016 (has links)
Mit dem Begriff Wellenleiterquantenelektrodynamik (WQED) wird gemeinhin die Physik des quantisierten und in eindimensionalen Wellenleitern geführten Lichtes in Wechselwirkung mit einzelnen Emittern bezeichnet. In dieser Arbeit untersuche ich Effekte der WQED für einzelne Dreiniveausysteme (3NS) bzw. Paare von Zweiniveausystemen (2NS), die in den Wellenleiter eingebettet sind. Hierzu bediene ich mich hauptsächlich numerischer Methoden und betrachte die Modellsysteme im Rahmen der Drehwellennäherung. Ich untersuche die Dynamik der Streuung einzelner Photonen an einzelnen, in den Wellenleiter eingebetteten 3NS. Dabei analysiere ich den Einfluss dunkler bzw. nahezu dunkler Zustände der 3NS auf die Streuung und zeige, wie sich mit Hilfe stationärer elektrischer Treibfelder gezielt auf die Streuung einwirken lässt. Ich quantifiziere Verschränkung zwischen dem Lichtfeld im Wellenleiter und den Emittern mit Hilfe der Schmidt-Zerlegung und untersuche den Einfluss der Form der Einhüllenden eines Einzelphotonpulses auf die Ausbeute der Verschränkungserzeugung bei der Streuung des Photons an einem einzelnen Lambda-System im Wellenleiter. Hier zeigt sich, dass die Breite der Einhüllenden im k-Raum und die Emissionszeiten der beiden Übergänge des 3NS die maßgeblichen Parameter darstellen. Abschließend ergründe ich die Emissionsdynamik zweier im Abstand L in den Wellenleiter eingebetteter 2NS. Diese Dynamik wird insbesondere durch kavitätsartige und polaritonische Zustände des Systems aus Wellenleiter und Emitter ausschlaggebend beeinflusst. Bei der kollektiven Emission der 2NS treten - abhängig vom Abstand L - Sub- bzw. Superradianz auf. Dabei nimmt die Intensität dieser Effekte mit längerem Abstand L zu. Diese Eigenart lässt sich auf die Eindimensionalität des Wellenleiters zurückführen. / The field of waveguide quantum electrodynamics (WQED) deals with the physics of quantised light in one-dimensional (1D) waveguides coupled to single emitters. In this thesis, I investigate WQED effects for single three-level systems (3LS) and pairs of two-level systems (2LS), respectively, which are embedded in the waveguide. To this end, I utilise numerical techniques and consider all model systems within the rotating wave approximation. I investigate the dynamics of single-photon scattering by single, embedded 3LS. In doing so, I analyse the influence of dark and almost-dark states of the 3LS on the scattering dynamics. I also show, how stationary electrical driving fields can control the outcome of the scattering. I quantify entanglement between the waveguide''s light field and single emitters by utilising the Schmidt decomposition. I apply this formalism to a lambda-system embedded in a 1D waveguide and study the generation of entanglement by scattering single-photon pulses with different envelopes on the emitter. I show that this entanglement generation is mainly determined by the photon''s width in k-space and the 3LS''s emission times. Finally, I explore the emission dynamics of a pair of 2LS embedded by a distance L into the waveguide. These dynamics are primarily governed by bound states in the continuum and by polaritonic atom-photon bound-states. For collective emission processes of the two 2LS, sub- and superradiance appear and depend strongly on the 2LS''s distance: the effects increase for larger L. This is an exclusive property of the 1D nature of the waveguide.
6

Collective radiative effects in nanofiber-coupled atomic ensembles / From timed Dicke states to full inversion

Liedl, Christian 04 July 2023 (has links)
In dieser Arbeit untersuchen wir kollektive Strahlungseffekte in Nanofaser-gekoppelten atomaren Ensembles, die sich über Tausende von optischen Wellenlängen erstrecken. Wir koppeln bis zu 1000 Atome optisch an die geführten Moden einer optischen Nanofaser, die langreichweitige Dipol-Dipol Wechselwirkungen zwischen den Atomen vermittelt. Wir realisieren eine unidirektionale Kopplung und damit ein kaskadiertes Quantensystem, in dem die Dynamik jedes Atoms ausschließlich durch die Dynamik der vorgelagerten Atome bestimmt wird. Wir regen die Atome mit nanofasergeführten optischen Pulsen kohärent an, was uns ermöglicht, den gesamten Parameterbereich von schwacher Anregung bis hin zur voll-ständigen Inversion zu erforschen. Wir stellen fest, dass die kohärente Vorwärtsstreuung, die für die Superradianz im Regime der schwachen Anregung verantwortlich ist, auch nahe voller Inversion eine wichtige Rolle für die Dynamik spielt. Wir beobachten superradiante Puls-Dynamik, die in unserem System trotz des makroskopischen Abstands zwischen den Atomen und einer asymmetrischen Kopplung auftritt. Wir stellen fest, dass die emittierte Spitzenleistung noch schneller mit der Anzahl der Atome skaliert als im Fall der idealen Dicke Superradianz, was auf eine kollektiv erhöhte Sammeleffizienz der nanofasergeführten Mode zurückzuführen ist. Die Analyse der Kohärenz-Eigenschaften des superradianten Pulses erlaubt es uns, zwei Regime der Puls-Dynamik zu identifizieren. Wir entwickeln ein kaskadiertes Wechselwirkungsmodell und zeigen, dass es die kollektive Dynamik unseres Systems über den gesamten in dieser Arbeit untersuchten Parameterbereich akkurat beschreibt. Schließlich untersuchen wir die getriebene Dynamik eines Nanofaser-gekoppelten Ensembles von Drei-Niveau-Atomen. Wir treiben Zwei-Photonen-Rabi-Oszillationen zwischen den beiden Grundzuständen eines $\Lambda$-Systems und beobachten die damit verbundene oszillatorische Raman-Verstärkung und -Absorption. / In this thesis, we study collective radiative effects in nanofiber-coupled atomic ensembles that extend over thousands of optical wavelengths. We optically couple up to 1000 atoms to the guided modes of an optical nanofiber, which mediates long-range dipole-dipole interactions between the atoms. We engineer the coupling to be unidirectional, realizing a cascaded quantum system in which the dynamics of each atom is solely determined by the dynamics of upstream atoms. We coherently excite the atoms using nanofiber-guided optical pulses, allowing us to explore the entire parameter regime from weak excitation to full inversion. We find that coherent forward scattering, which is responsible for superradiance in the weak excitation regime, plays an important role for the dynamics even close to full inversion. We observe superradiant burst dynamics, which occurs in our system despite the macroscopic separation between the atoms and an asymmetric coupling. We find that the peak-emitted power scales even faster with the number of atoms than in the case of ideal Dicke superradiance due to a collectively enhanced channeling efficiency into the nanofiber-guided mode. By analyzing the coherence properties of the superradiant burst, we directly identify two regimes of burst dynamics. In the second regime, there is no initial coherence, and the superradiant burst is seeded by vacuum fluctuations. We introduce a cascaded interaction model and find that it accurately describes the collective dynamics of our system over the entire parameter regime explored in this thesis. Finally, we study the driven dynamics of a nanofiber-coupled ensemble of three-level atoms. We drive two-photon Rabi oscillations between the two ground states of a $\Lambda$ system and observe the associated oscillatory Raman gain and absorption.

Page generated in 0.0514 seconds