• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Qed in periodischen und absorbierenden Medien / Qed in periodic and lossy media

Kurcz, Andreas January 2005 (has links)
Das Strahlungsfeld in einem absorbierenden, periodischen Dielektrikum ist kanonisch quantisiert worden. Dabei wurde ein eindimensionales Modell mit punktförmigen Streuern betrachtet, deren Polarisierbarkeit den Kramers-Kronig Relationen gehorcht. Es wurde ein Quantisierungsverfahren nach Knöll, Scheel und Welsch [1] verwendet, das als eine Ergänzung zum mikroskopischen Huttner-Barnett Schema [2] aufgefaßt werden kann und in dem auf der Basis der phänomenologischen Maxwell Gleichungen eine bosonische Rauschpolarisation als die Quelle des Feldes auftritt. Das Problem reduziert sich dabei auf die Bestimmung der klassischenGreens Funktion. Die Kramers-Kronig Relationen der komplexen Polarisierbarkeit der Punktstreuer sichert die korrekte Verknüpfung zwischen Dispersion und Absorption. Der Punktstreuer ist dabei ein idealisiertes Modell, um periodische Hintergrundmedien, denen das Strahlungsfeld ausgesetzt ist, zu beschreiben. Er bedarf jedoch eines Kompromisses, um die entsprechenden Rauschquellen zu konstruieren. Es konnte gezeigt werden, daß der Punktstreuer dasselbe Streuverhalten wie eine dünne Potentialschwelle besitzt und damit die technischen Schwierigkeiten für den Fall eines absorptiven Punktstreuers überwunden werden können. An Hand dieses Beispiels konnte das Quantisierungsschema nach Knöll, Scheel und Welsch auf periodische und absorbierende Strukturen angewendet werden. Es ist bekannt, daß die Bestimmung der Modenstruktur für den Fall der Modenzerlegung des Strahlungsfeldes ein rein klassisches Problem darstellt. Mit Ausnahme des Vakuums ist eine zweckmäßige Modenzerlegung nur dann durchführbar, wenn mit einer reellen Polarisierbarkeit die Absorption vernachlässigt werden kann. Aus den Kramers-Kronig Relationen wird klar, daß solch eine Annahme nur in bestimmten Intervallen des Frequenzspektrums gerechtfertigt werden kann. Es wurde gezeigt, daß auch das quantisierte Strahlungsfeld in Anwesenheit der Punktstreuer in eben solchen Intervallen in Quasimoden entwickelt werden kann, wenn man neue Quasioperatoren als Erzeuger und Vernichter einführt. Die bosonischen Vertauschungsrelationen dieser Operatoren konnten bestätigt werden. Die allgemeine Vertauschungsrelation kanonisch konjugierter Variablen im Sinne der kanonischen Quantisierung kann für das elektrische Feld und das Vektorpotential beibehalten werden. In der Greens Funktion sind sämtliche Informationen über die dispersiven und absorptiven Eigenschaften des Dielektrikums sowie über die räumliche Struktur enthalten. Die wesentlichen Merkmale werden dabei durch den Reflexionskoeffizienten nach Boedecker und Henkel [3] bestimmt, der das Reflexionsverhalten an einem unendlich ausgedehnten Halbraum aus periodisch angeordneten Punktstreuern beschreibt. Mit Hilfe des Transfermatrixformalismus war es möglich einen allgemeinen Zugang zum Reflexionsverhalten zunächst endlicher Strukturen zu erhalten. Die Ausdehnung auf den Halbraum mit Hilfe der Klassifizierung in Untergruppen der Transfermatrizen nach ermöglichte es, den Reflexionskoeffizienten nach Boedecker und Henkel [3] auch geometrisch plausibel zu machen. Ein wesentlicher Aspekt von periodischen Systemen ist die Translationssymmetrie, die im Fall unendlich ausgedehnter, verlustfreier Systeme auf eine ideale Bandstruktur führt. Mit Hilfe der Untergruppenklassifizierung kann im verlustfreien Fall die Geometrie der Anordnung indirekt mit der Bandstruktur verknüpft werden. Es konnte nachgewiesen werden, daß auch der einzelne Punktstreuer immer in einer dieser Untergruppen zu finden ist. Dabei besitzt die Bandstruktur der unendlich periodischen Anordnung dieser Streuer immer eine von der Polarisierbarkeit abhängige Bandkante und eine von der Polarisierbarkeit unabhängige Bandkante. Die Bandstruktur, die mit den verlustbehafteten Feldern einhergeht, ist eine doppelt komplexe. Alternativ zu dieser nur schwer zu interpretierenden Bandstruktur wurden die Feldfluktuationen selektiv nach reellen Frequenzen und Wellenzahlen sondiert. Es zeigt sich, daß Absorption besonders in der Nähe der Bandkanten die Bänder verbreitert. Die Ergebnisse, die mit Hilfe der lokalen Zustandsdichtefunktion gewonnen wurden, konnten dabei bestätigt werden. [1] S. Scheel, L. Knöll and D. G. Welsch, Phys.Rev. A 58, 700 (1998). [2] B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992). [3] G. Boedecker and C. Henkel, OPTICS EXPRESS 11, 1590 (2003). / A canonical scheme based on the phenomenological Maxwell equations in the presence of dielectric matter is used to quantize the electromagnetic field in a periodic and lossy linear dielectric. We focus on a one-dimensional model of point scatterers with given frequency-dependent complex permittivity, and construct an expansion of the field operators that is based on the Green function and preserves the canonical equal-time commutation relations. Translation symmetry is secured by working with an infinite lattice. The impact of absorption is examined using the local density of states and the decay rate of a phase-coherent dipole chain located inside the structure. Incidentally the model is used to bring about a geometrical interpretation of the reflection from multilayers
2

Local Structural and Optical Characterization of Photonic Crystals by Back Focal Plane Imaging and Spectroscopy

Wagner, Rebecca 20 April 2015 (has links) (PDF)
This thesis establishes methods to locally and effciently detect the fluorescence from photonic crystals (PCs) in dependence on wavelength and direction. These are applied to three dimensional (3D) PCs grown by vertical deposition of polystyrene beads. The experiments allow conclusions about the local 3D structure of a sample, about defects in its volume and about spatial structural variations. They thus provide more information than typical spectroscopy measurements that average over large areas and methods that only image the surface structure like scanning electron microscopy. A focused laser is used to excite emitters in the sample only locally. The fluorescence is then collected by a microscope objective. Every point in this objective’s back focal plane (BFP) corresponds to a certain direction. This property is utilized in two ways. When observing a small spectral range of the emission in the BFP, stop bands appear as intensity minima since they hinder the emission into the corresponding directions. Thus, back focal plane imaging (BFPI) allows to visualize stop bands of many directions at the same time. The detected patterns permit to find the in-plane and out-of-plane orientation of the PC lattice and to conclude on the presence of stacking faults. Spatial variations of the structure are observed on a length scale of a few micrometers. The depth of the stop band is reduced at sample positions, where structural changes occur. In back focal plane spectroscopy (BFPS), a slit selects light from certain points in the BFP, which is spectrally dispersed subsequently. This allows to record spectra from many directions simultaneously. From them, a lattice compression along the sample normal of about 4% is found. Small deformations are also observed for other directions. Scattering at defects redistributes the emission. This increases the detected intensity compared to homogeneous media at some stop band edges in a broad spectral range for samples thicker than the scattering mean free path. Thinner samples show a narrow enhancement due to an increase in the fractional density of optical states and thus in emission. BFPI and BFPS are also used to observe the growth of PCs from drying droplets. The experiments show that the beads initially form a non-close packed lattice. This causes stress as the lattice constant decreases, which is released by cracking of the PCs.
3

Local Structural and Optical Characterization of Photonic Crystals by Back Focal Plane Imaging and Spectroscopy

Wagner, Rebecca 12 March 2015 (has links)
This thesis establishes methods to locally and effciently detect the fluorescence from photonic crystals (PCs) in dependence on wavelength and direction. These are applied to three dimensional (3D) PCs grown by vertical deposition of polystyrene beads. The experiments allow conclusions about the local 3D structure of a sample, about defects in its volume and about spatial structural variations. They thus provide more information than typical spectroscopy measurements that average over large areas and methods that only image the surface structure like scanning electron microscopy. A focused laser is used to excite emitters in the sample only locally. The fluorescence is then collected by a microscope objective. Every point in this objective’s back focal plane (BFP) corresponds to a certain direction. This property is utilized in two ways. When observing a small spectral range of the emission in the BFP, stop bands appear as intensity minima since they hinder the emission into the corresponding directions. Thus, back focal plane imaging (BFPI) allows to visualize stop bands of many directions at the same time. The detected patterns permit to find the in-plane and out-of-plane orientation of the PC lattice and to conclude on the presence of stacking faults. Spatial variations of the structure are observed on a length scale of a few micrometers. The depth of the stop band is reduced at sample positions, where structural changes occur. In back focal plane spectroscopy (BFPS), a slit selects light from certain points in the BFP, which is spectrally dispersed subsequently. This allows to record spectra from many directions simultaneously. From them, a lattice compression along the sample normal of about 4% is found. Small deformations are also observed for other directions. Scattering at defects redistributes the emission. This increases the detected intensity compared to homogeneous media at some stop band edges in a broad spectral range for samples thicker than the scattering mean free path. Thinner samples show a narrow enhancement due to an increase in the fractional density of optical states and thus in emission. BFPI and BFPS are also used to observe the growth of PCs from drying droplets. The experiments show that the beads initially form a non-close packed lattice. This causes stress as the lattice constant decreases, which is released by cracking of the PCs.
4

Improving the light yield and timing resolution of scintillator-based detectors for positron emission tomography

Thalhammer, Christof 06 July 2015 (has links)
Positronen-Emissions-Tomographie (PET) ist eine funktionelle medizinische Bildgebungstechnik. Die Lichtausbeute und Zeitauflösung Szintillator basierter PET Detektoren wird von diversen optischen Prozessen begrenzt. Dazu gehört die Lichtauskopplung aus Medien mit hohem Brechungsindex sowie Sensitivitätsbegrenzungen der Photodetektoren. Diese Arbeit studiert mikro- und nano-optische Ansätze um diese Einschränkungen zu überwinden mit dem Ziel das Signal-Rausch Verhältnis sowie die Bildqualität zu verbessern. Dafür wird ein Lichtkonzentrator vorgeschlagen um die Sensitivität von Silizium Photomultipliern zu erhöhen sowie dünne Schichten photonischer Kristalle um die Lichtauskopplung aus Szintillatoren zu verbessern. Die Ansätze werden mit optischen Monte Carlo Simulationen studiert, wobei die Beugungseigenschaften phot. Kristalle hierbei durch eine neuartige kombinierte Methode berücksichtigt werden. Proben der phot. Kristalle und Lichtkonzentratoren wurden mit Fertigungsprozessen der Halbleitertechnologie hergestellt und mit Hilfe eines Goniometer Aufbaus charakterisiert. Die simulierten Eigenschaften konnten hiermit sehr gut experimentell reproduziert werden. Daraufhin wurden Simulationen durchgeführt um den Einfluss beider Konzepte auf die Charakteristika eines PET Detektors zu untersuchen. Diese sagen signifikante Verbesserungen der Lichtausbeute und Zeitauflösung voraus. Darüber hinaus zeigen sie, dass sich auch die Kombination beider Ansätze positiv auf die Detektoreigenschaften auswirken. Diese Ergebnisse wurden in Lichtkonzentrator-Experimenten mit einzelnen Szintillatoren bestätigt. Da die Herstellung phot. Kristalle eine große technologische Herausforderung darstellt, wurde eine neue Fertigungstechnik namens "direct nano imprinting" entwickelt. Dessen Machbarkeit wurde auf Glasswafern demonstriert. Die Arbeit endet mit einer Diskussion der Vor- und Nachteile von Lichtkonzentratoren und phot. Kristallen und deren Implikationen für zukünftige PET Systeme. / Positron emission tomography (PET) is a powerful medical imaging methodology to study functional processes. The light yield and coincident resolving time (CRT) of scintillator-based PET detectors are constrained by optical processes. These include light trapping in high refractive index media and incomplete light collection by photosensors. This work proposes the use of micro and nano optical devices to overcome these limitations with the ultimate goal to improve the signal-to-noise ratio and overall image quality of PET acquisitions. For this, a light concentrator (LC) to improve the light collection of silicon photomultipliers on the Geiger-cell level is studied. Further, two-dimensional photonic crystals (PhCs) are proposed to reduced light trapping in scintillators. The concepts are studied in detail using optical Monte Carlo simulations. To account for the diffractive properties of PhCs, a novel combined simulation approach is presented that integrates results of a Maxwell solver into a ray tracing algorithm. Samples of LCs and PhCs are fabricated with various semiconductor technologies and evaluated using a goniometer setup. A comparison between measured and simulated angular characteristics reveal very good agreement. Simulation studies of implementing LCs and PhCs into a PET detector module predict significant improvements of the light yield and CRT. Also, combining both concepts indicates no adverse effects but a rather a cumulative benefit for the detector performance. Concentrator experiments with individual scintillators confirm these simulation results. Realizing the challenges of transferring PhCs to scintillators, a novel fabrication method called direct nano imprinting is evaluated. The feasibility of this approach is demonstrated on glass wafers. The work concludes with a discussion of the benefits and drawbacks of LCs and PhCs and their implications for future PET systems.
5

Wellenleiterquantenelektrodynamik mit Mehrniveausystemen

Martens, Christoph 18 January 2016 (has links)
Mit dem Begriff Wellenleiterquantenelektrodynamik (WQED) wird gemeinhin die Physik des quantisierten und in eindimensionalen Wellenleitern geführten Lichtes in Wechselwirkung mit einzelnen Emittern bezeichnet. In dieser Arbeit untersuche ich Effekte der WQED für einzelne Dreiniveausysteme (3NS) bzw. Paare von Zweiniveausystemen (2NS), die in den Wellenleiter eingebettet sind. Hierzu bediene ich mich hauptsächlich numerischer Methoden und betrachte die Modellsysteme im Rahmen der Drehwellennäherung. Ich untersuche die Dynamik der Streuung einzelner Photonen an einzelnen, in den Wellenleiter eingebetteten 3NS. Dabei analysiere ich den Einfluss dunkler bzw. nahezu dunkler Zustände der 3NS auf die Streuung und zeige, wie sich mit Hilfe stationärer elektrischer Treibfelder gezielt auf die Streuung einwirken lässt. Ich quantifiziere Verschränkung zwischen dem Lichtfeld im Wellenleiter und den Emittern mit Hilfe der Schmidt-Zerlegung und untersuche den Einfluss der Form der Einhüllenden eines Einzelphotonpulses auf die Ausbeute der Verschränkungserzeugung bei der Streuung des Photons an einem einzelnen Lambda-System im Wellenleiter. Hier zeigt sich, dass die Breite der Einhüllenden im k-Raum und die Emissionszeiten der beiden Übergänge des 3NS die maßgeblichen Parameter darstellen. Abschließend ergründe ich die Emissionsdynamik zweier im Abstand L in den Wellenleiter eingebetteter 2NS. Diese Dynamik wird insbesondere durch kavitätsartige und polaritonische Zustände des Systems aus Wellenleiter und Emitter ausschlaggebend beeinflusst. Bei der kollektiven Emission der 2NS treten - abhängig vom Abstand L - Sub- bzw. Superradianz auf. Dabei nimmt die Intensität dieser Effekte mit längerem Abstand L zu. Diese Eigenart lässt sich auf die Eindimensionalität des Wellenleiters zurückführen. / The field of waveguide quantum electrodynamics (WQED) deals with the physics of quantised light in one-dimensional (1D) waveguides coupled to single emitters. In this thesis, I investigate WQED effects for single three-level systems (3LS) and pairs of two-level systems (2LS), respectively, which are embedded in the waveguide. To this end, I utilise numerical techniques and consider all model systems within the rotating wave approximation. I investigate the dynamics of single-photon scattering by single, embedded 3LS. In doing so, I analyse the influence of dark and almost-dark states of the 3LS on the scattering dynamics. I also show, how stationary electrical driving fields can control the outcome of the scattering. I quantify entanglement between the waveguide''s light field and single emitters by utilising the Schmidt decomposition. I apply this formalism to a lambda-system embedded in a 1D waveguide and study the generation of entanglement by scattering single-photon pulses with different envelopes on the emitter. I show that this entanglement generation is mainly determined by the photon''s width in k-space and the 3LS''s emission times. Finally, I explore the emission dynamics of a pair of 2LS embedded by a distance L into the waveguide. These dynamics are primarily governed by bound states in the continuum and by polaritonic atom-photon bound-states. For collective emission processes of the two 2LS, sub- and superradiance appear and depend strongly on the 2LS''s distance: the effects increase for larger L. This is an exclusive property of the 1D nature of the waveguide.

Page generated in 0.0701 seconds