• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecules in strong laser fields

Awasthi, Manohar 21 January 2010 (has links)
Eine Methode zur Lösung der zeitabhängigen Schrödingergleichung (engl. time-dependent Schrödinger equation, TDSE) wurde entwickelt, welche das Verhalten der Elektronenbewegung in Molekülen beschreibt, die ultrakurzen, intensiven Laserpulsen ausgesetzt werden. Die zeitabhängigen elektronischen Wellenfunktionen werden durch eine Superposition von feldfreien Eigenzuständen beschrieben, welche auf zwei Weisen berechnet werden. Im ersten Ansatz , welcher auf Zweielektronen-Systeme wie H$_2$ anwendbar ist, werden die voll korrelierten feldfreien Eigenzustände in voller Dimensionalität in einem Konfigurations-Wechselwirkungs Verfahren (engl. configuration interaction, CI) bestimmt, wobei die Einelektron-Basisfunktionen mit B-Splines beschrieben werden. Im zweiten Verfahren, welches sogar auf größere Moleküle anwendbar ist, werden die feldfreien Eigenzustände in der Näherung eines aktiven Elektrons (engl. single active electron, SAE) mit Verwendung der Dichtefunktionaltheorie (DFT) bestimmt. Im Allgemeinen kann die Methode zum Auffinden der zeitabhängigen Lösung in zwei Schritte, dem Auffinden der feldfreien Eigenzustände und einer Zeitpropagation in Abhängigkeit der Laserpuls-Parameter, unterteilt werden. Die Gültigkeit der SAE Näherung ist überprüft und die Ergebnisse für grund und erste angeregte zustand der Wasserstoff-Molekül werden vorgestellt. Die Ergebnisse für einige größere Moleküle innerhalb der SAE Angleichung werden ebenfalls gezeigt. / A method for solving the time-dependent Schrödinger equation (TDSE) describing the electronic motion of the molecules exposed to very short intense laser pulses has been developed. The time-dependent electronic wavefunction is expanded in terms of a superposition of field-free eigenstates. The field-free eigenstates are calculated in two ways. In the first approach, which is applicable to two electron systems like hydrogen molecule, fully correlated field-free eigenstates are obtained in complete dimensionality using configuration-interaction calculation where the one-electron basis functions are built from B-splines. In the second approach, which is even applicable to larger molecules, the field-free eigenstates are calculated within the single-active-electron (SAE) approximation using density functional theory. In general, the method can be divided into two parts, in the first part the field-free eigenstates are calculated and then in the second part a time propagation for the laser pulse parameters is performed. Using these methods the validity of SAE approximation is tested and the results for the ground and first excited state of hydrogen molecule are presented. The results for some larger molecules within the SAE approximation are also shown.
2

Ionization of molecular hydrogen in ultrashort intense laser pulses

Vanne, Yulian V. 30 March 2010 (has links)
Ein neuer numerischer ab initio Ansatz wurde entwickelt und zur Lösung der zeitabhängigen Schrödingergleichung für zweiatomig Moleküle mit zwei Elektronen (z.B. molekularer Wasserstoff), welche einem intensiven kurzen Laserpuls ausgesetzt sind, angewandt. Die Methode basiert auf der Näherung fester Kernabstände und der nicht-relativistischen Dipolnäherung und beabsichtigt die genaue Beschreibung der beiden korrelierten Elektronen in voller Dimensionalität. Die Methode ist anwendbar für eine große Bandbreite von Laserpulsparamtern und ist in der Lage, Einfachionisationsprozesse sowohl mit wenigen als auch mit vielen Photonen zu beschreiben, sogar im nicht-störungstheoretischen Bereich. Ein entscheidender Vorteil der Methode ist ihre Fähigkeit, die Reaktion von Molekülen mit beliebiger Orientierung der molekularen Achse im Bezug auf das linear polarisierte Laserfeld in starken Feldern zu beschreiben. Dementsprechend berichtet diese Arbeit von der ersten erfolgreichen orientierungsabhängigen Analyse der Multiphotonenionisation von H2, welche mit Hilfe einer numerischen Behandlung in voller Dimensionalität durchgeführt wurde. Neben der Erforschung des Bereichs weniger Photonen wurde eine ausführliche numerische Untersuchung der Ionisation durch ultrakurze frequenzverdoppelte Titan:Saphir-Laserpulse (400 nm) präsentiert. Mit Hilfe einer Serie von Rechnungen für verschiedene Kernabstände wurden die totalen Ionisationsausbeuten für H2 und D2 in ihren Vibrationsgrundzuständen sowohl für parallele als auch für senkrechte Ausrichtung erhalten. Eine weitere Serie von Rechnungen für 800nm Laserpulse wurde benutzt, um ein weitverbreitetes einfaches Interferenzmodel zu falsifizieren. Neben der Diskussion der numerischen ab initio Methode werden in dieser Arbeit verschiedene Aspekte im Bezug auf die Anwendung der Starkfeldnäherung für die Erforschung der Reaktion eines atomaren oder molekularen Systems auf ein intensives Laserfeld betrachtet. / A novel ab initio numerical approach is developed and applied that solves the time-dependent Schrödinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H2 performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H2 and D2 in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized.
3

Molecules exposed to Intense, Ultrashort Laser Fields

Förster, Johann Jakob 07 May 2018 (has links)
Das Ionisierungsverhalten kleiner Moleküle (insbesondere H2 und NH3) in intensiven, ultrakurzen Laserfeldern wird theoretisch untersucht. Das Hauptaugenmerk liegt dabei auf dem Einfluss der Kerndynamik. Zunächst wird das Ionisierungsverhalten des H2-Moleküls bei eingefrorener Kernschwingung untersucht. Bereits im Rahmen dieser Näherung kann im Mehrphotonenregime ein zuvor beobachteter Zusammenbruch der Näherung im Gleichgewichtsabstand festgehaltener Kerne erklärt werden. Weiterhin wird der Übergang vom Mehrphotonen zum quasistatischen Ionisierungsregime für 800-nm-Laserfelder untersucht. Eine neuartige Methode zur Beschreibung der korrelierten Schwingungs- und Elektronendynamik des H2-Moleküls (7D) wird entwickelt. Mit dieser Methode wird schließlich der Einfluss der Kernbewegung während des Laserfeldes auf das Ionisierungsverhalten untersucht. Es wird ein sichtbarer Einfluss auf den zuvor diskutierten Zusammenbruch der Näherung festgehaltener Kerne beobachtet. Dies gilt ebenfalls für einen vor kurzem experimentell beobachteten Isotopeneffekt in der Ionisierung der Moleküle H2 vs. D2 untersucht. Im zweiten Teil der Arbeit wird das Ionisierungsverhalten des NH3-Moleküls untersucht. Die Möglichkeit, die Kerngeometrieabhängigkeit zur Erzeugung und Messung von Schwingungswellenpaketen im neutralen NH3-Molekül mittels Lochfraß auszunutzen, wird untersucht. Das erwartete Schwingungsverhalten und die dafür optimalen Laserparameter werden aufgezeigt. Zusätzlich wird die Möglichkeit des Filmens eines tunnelnden Kernwellenpakets im Doppelmuldenpotential entlang der Schwingungskoordinate untersucht. In der Tat sollte die Verwendung extrem kurzer Laserfelder das Drehen eines Echtzeit-Filmes dieses quantenmechanischen Tunnelprozesses ermöglichen. Abschließend werden die Winkelabhängigkeit der Ionisierungswahrscheinlichkeit von NH3 (ähnelt Orbitalgeometrie) sowie elliptisch polarisierte Laserfelder untersucht. / The ionization behavior of small molecules (especially H2 and NH3) exposed to intense, ultrashort laser fields is investigated theoretically. The focus lies on the influence of nuclear dynamics on this ionization behavior. The ionization behavior of the H2 molecule is first examined within the frozen-nuclei approximation. A previously reported pronounced breakdown of the fixed-nuclei approximation can be explained already within this level of approximation. Furthermore, the transition from the multiphoton to the quasistatic ionization regime is studied for 800 nm laser pulses. A novel approach for the correlated description of the electronic-vibrational motion of the H2 molecule (7D) is developed. The influence of vibrational dynamics during the laser field on the ionization behavior is investigated using this method. A pronounced difference on the previously discussed breakdown of the fixed-nuclei approximation is observed. The vibrational dynamics also lead to a notable change for a recently experimentally observed isotope effect in the ionization of the molecular isotopes H2 vs. D2. The ionization behavior of the NH3 molecule is studied in the second part of this thesis. The possibility to exploit the geometry dependence of the ionization yield in order to create and measure vibrational wave packets in the neutral NH3 molecule via Lochfraß is explored. The expected vibrational dynamics and the optimal laser parameters to observe this effect are demonstrated. Furthermore, the possibility to shoot a "movie" of a tunneling wave packet in the double-well potential along the vibrational coordinate is investigated. Indeed, extremely short laser fields should allow creating a real-time movie of the quantum-mechanical tunneling process. Finally, the orientation dependence of the ionization yield of the NH3 molecule (reflecting the orbital shape) and elliptically polarized laser fields are studied.
4

Beyond-the-dipole effects in strong-field photoionization using short intense laser pulses

Jobunga, Eric Ouma 23 November 2016 (has links)
Die Entwicklung Freier-Elektronen-Laser und einer neuen Generation von Strahlungsquellen erlaubt die Realisierung hoher Intensitäten und kurzer Pulsdauern. Im Regime niedriger Laserintensitäten war bisher die Dipolnäherung recht erfolgreich bei der Beschreibung der durch die Licht-Materie-Wechselwirkung erzeugten Dynamik, wodurch viele experimentell beobachtete Resultate reproduziert werden konnten. Bei den durch die neuen Strahlungsqullen erzeugten bisher unerreichten Intensitäten und Rönten-Wellenlängen kann die Dipolnäherung allerdings zusammenbrechen. Höhere Multipol-Wechselwirkungen, die mit dem Strahlungsdruck assoziiert werden, sollten dann erwartungsgemäß wichtig zur genauen Beschreibung der Wechselwirkungsdynamiken werden. In dieser Arbeit wird eine Methode zur Lösung der nichtrelativistischen zeitabhängigen Schrödingergleichung zur Beschreibung von Systemen mit einem einzelnen aktiven Elektron, das mit einem Laserfeld wechselwirkt, über die Dipolnäherung hinausgehend erweitert. Dabei wird sowohl die Taylor- als auch die Rayleight-Multipolentwicklung des Retardierungsterms ebener Wellen verwendet. Es wird erwartet, dass die Berücksichtigung höherer Ordnungen der Multipolwechselwirkung zu einer erhöhten Genauigkeit und Richtigkeit der Resultate führen. Weiterhin wird gezeigt, dass die Rayleigh-Multipolentwicklung für gleiche Laserparameter genauer ist und schneller zur Konvergenz der numerischen Rechnung führt. Die nicht-Dipoleffekte spiegeln is sowohl in den differentiellen als auch den totalen Ionisierungswahrscheinlichkeiten in Form von erhöhten Ionisierungsausbeuten, verzerrten ATI Strukturen und einer Asymmetrie in der Photoelektronenwinkelverteilung in der Polarisations und Propagationsrichtung wider. Es wird beobachtet, dass die nicht-Dipoleffekte mit der Intensität, Wellenlänge und Pulsdauer zunehmen. Es werden Ergebnisse sowohl für das Wasserstoffatom als auch das Heliumatom gezeigt. / The development of free-electron lasers and new generation light sources is enabling the realisation of high intensities and short pulse durations. In the weak-field intensity regime, the electric dipole approximation has been quite successful in describing the light-matter interaction dynamics reproducing many of the experimentally observed features. But at the unprecedented intensities and x-ray wavelengths produced by the new light sources, the electric dipole approximation is likely to break down. The role of higher multipole-order terms in the interaction Hamiltonian, associated with the radiation pressure, is then expected to become important in the accurate description of the interaction dynamics. This study extends the solution of the non-relativistic time dependent Schrödinger equation for a single active electron system interacting with short intense laser pulses beyond the standard dipole approximation. This is realized using both the Taylor and the Rayleigh plane-wave multipole expansion series of the spatial retardation term. The inclusion of higher multipole-order terms of the interaction is expected to increase the validity and accuracy of the calculated observables relative to the experimental measurements. In addition, it is shown that for equivalent laser parameters the Rayleigh multipole expansion series is more accurate and efficient in numerical convergence. The investigated non-dipole effects manifest in both differential and total ionization probabilities in form of the increased ion yields, the distorted above-threshold-ionization structure, and asymmetry of the photoelectron angular distribution in both polarization and propagation directions. The non-dipole effects are seen to increase with intensity, wavelength, and pulse duration. The results for hydrogen as well as helium atom are presented in this study.
5

Quantum Dissipative Dynamics and Decoherence of Dimers on Helium Droplets

Schlesinger, Martin 06 February 2012 (has links) (PDF)
In this thesis, quantum dynamical simulations are performed in order to describe the vibrational motion of diatomic molecules in a highly quantum environment, so-called helium droplets. We aim to reproduce and explain experimental findings which were obtained from dimers on helium droplets. Nanometer-sized helium droplets contain several thousands of 4-He atoms. They serve as a host for embedded atoms or molecules and provide an ultracold “refrigerator” for them. Spectroscopy of molecules in or on these droplets reveals information on both the molecule and the helium environment. The droplets are known to be in the superfluid He II phase. Superfluidity in nanoscale systems is a steadily growing field of research. Spectra obtained from full quantum simulations for the unperturbed dimer show deviations from measurements with dimers on helium droplets. These deviations result from the influence of the helium environment on the dimer dynamics. In this work, a well-established quantum optical master equation is used in order to describe the dimer dynamics effectively. The master equation allows to describe damping fully quantum mechanically. By employing that equation in the quantum dynamical simulation, one can study the role of dissipation and decoherence in dimers on helium droplets. The effective description allows to explain experiments with Rb-2 dimers on helium droplets. Here, we identify vibrational damping and associated decoherence as the main explanation for the experimental results. The relation between decoherence and dissipation in Morse-like systems at zero temperature is studied in more detail. The dissipative model is also used to investigate experiments with K-2 dimers on helium droplets. However, by comparing numerical simulations with experimental data, one finds that further mechanisms are active. Here, a good agreement is obtained through accounting for rapid desorption of dimers. We find that decoherence occurs in the electronic manifold of the molecule. Finally, we are able to examine whether superfluidity of the host does play a role in these experiments. / In dieser Dissertation werden quantendynamische Simulationen durchgeführt, um die Schwingungsbewegung zweiatomiger Moleküle in einer hochgradig quantenmechanischen Umgebung, sogenannten Heliumtröpfchen, zu beschreiben. Unser Ziel ist es, experimentelle Befunde zu reproduzieren und zu erklären, die von Dimeren auf Heliumtröpfchen erhalten wurden. Nanometergroße Heliumtröpfchen enthalten einige tausend 4-He Atome. Sie dienen als Wirt für eingebettete Atome oder Moleküle und stellen für dieseeinen ultrakalten „Kühlschrank“ bereit. Durch Spektroskopie mit Molekülen in oder auf diesen Tröpfchen erhält man Informationen sowohl über das Molekül selbst als auch über die Heliumumgebung. Man weiß, dass sich die Tröpfchen in der suprafluiden He II Phase befinden. Suprafluidität in Nanosystemen ist ein stetig wachsendes Forschungsgebiet. Spektren, die für das ungestörte Dimer durch voll quantenmechanische Simulationen erhalten werden, weichen von Messungen mit Dimeren auf Heliumtröpfchen ab. Diese Abweichungen lassen sich auf den Einfluss der Heliumumgebung auf die Dynamik des Dimers zurückführen. In dieser Arbeit wird eine etablierte quantenoptische Mastergleichung verwendet, um die Dynamik des Dimers effektiv zu beschreiben. Die Mastergleichung erlaubt es, Dämpfung voll quantenmechanisch zu beschreiben. Durch Verwendung dieser Gleichung in der Quantendynamik-Simulation lässt sich die Rolle von Dissipation und Dekohärenz in Dimeren auf Heliumtröpfchen untersuchen. Die effektive Beschreibung erlaubt es, Experimente mit Rb-2 Dimeren zu erklären. In diesen Untersuchungen wird Dissipation und die damit verbundene Dekohärenz im Schwingungsfreiheitsgrad als maßgebliche Erklärung für die experimentellen Resultate identifiziert. Die Beziehung zwischen Dekohärenz und Dissipation in Morse-artigen Systemen bei Temperatur Null wird genauer untersucht. Das Dissipationsmodell wird auch verwendet, um Experimente mit K-2 Dimeren auf Heliumtröpfchen zu untersuchen. Wie sich beim Vergleich von numerischen Simulationen mit experimentellen Daten allerdings herausstellt, treten weitere Mechanismen auf. Eine gute Übereinstimmung wird erzielt, wenn man eine schnelle Desorption der Dimere berücksichtigt. Wir stellen fest, dass ein Dekohärenzprozess im elektronischen Freiheitsgrad des Moleküls auftritt. Schlussendlich sind wir in der Lage herauszufinden, ob Suprafluidität des Wirts in diesen Experimenten eine Rolle spielt.
6

Quantum Dissipative Dynamics and Decoherence of Dimers on Helium Droplets

Schlesinger, Martin 16 December 2011 (has links)
In this thesis, quantum dynamical simulations are performed in order to describe the vibrational motion of diatomic molecules in a highly quantum environment, so-called helium droplets. We aim to reproduce and explain experimental findings which were obtained from dimers on helium droplets. Nanometer-sized helium droplets contain several thousands of 4-He atoms. They serve as a host for embedded atoms or molecules and provide an ultracold “refrigerator” for them. Spectroscopy of molecules in or on these droplets reveals information on both the molecule and the helium environment. The droplets are known to be in the superfluid He II phase. Superfluidity in nanoscale systems is a steadily growing field of research. Spectra obtained from full quantum simulations for the unperturbed dimer show deviations from measurements with dimers on helium droplets. These deviations result from the influence of the helium environment on the dimer dynamics. In this work, a well-established quantum optical master equation is used in order to describe the dimer dynamics effectively. The master equation allows to describe damping fully quantum mechanically. By employing that equation in the quantum dynamical simulation, one can study the role of dissipation and decoherence in dimers on helium droplets. The effective description allows to explain experiments with Rb-2 dimers on helium droplets. Here, we identify vibrational damping and associated decoherence as the main explanation for the experimental results. The relation between decoherence and dissipation in Morse-like systems at zero temperature is studied in more detail. The dissipative model is also used to investigate experiments with K-2 dimers on helium droplets. However, by comparing numerical simulations with experimental data, one finds that further mechanisms are active. Here, a good agreement is obtained through accounting for rapid desorption of dimers. We find that decoherence occurs in the electronic manifold of the molecule. Finally, we are able to examine whether superfluidity of the host does play a role in these experiments. / In dieser Dissertation werden quantendynamische Simulationen durchgeführt, um die Schwingungsbewegung zweiatomiger Moleküle in einer hochgradig quantenmechanischen Umgebung, sogenannten Heliumtröpfchen, zu beschreiben. Unser Ziel ist es, experimentelle Befunde zu reproduzieren und zu erklären, die von Dimeren auf Heliumtröpfchen erhalten wurden. Nanometergroße Heliumtröpfchen enthalten einige tausend 4-He Atome. Sie dienen als Wirt für eingebettete Atome oder Moleküle und stellen für dieseeinen ultrakalten „Kühlschrank“ bereit. Durch Spektroskopie mit Molekülen in oder auf diesen Tröpfchen erhält man Informationen sowohl über das Molekül selbst als auch über die Heliumumgebung. Man weiß, dass sich die Tröpfchen in der suprafluiden He II Phase befinden. Suprafluidität in Nanosystemen ist ein stetig wachsendes Forschungsgebiet. Spektren, die für das ungestörte Dimer durch voll quantenmechanische Simulationen erhalten werden, weichen von Messungen mit Dimeren auf Heliumtröpfchen ab. Diese Abweichungen lassen sich auf den Einfluss der Heliumumgebung auf die Dynamik des Dimers zurückführen. In dieser Arbeit wird eine etablierte quantenoptische Mastergleichung verwendet, um die Dynamik des Dimers effektiv zu beschreiben. Die Mastergleichung erlaubt es, Dämpfung voll quantenmechanisch zu beschreiben. Durch Verwendung dieser Gleichung in der Quantendynamik-Simulation lässt sich die Rolle von Dissipation und Dekohärenz in Dimeren auf Heliumtröpfchen untersuchen. Die effektive Beschreibung erlaubt es, Experimente mit Rb-2 Dimeren zu erklären. In diesen Untersuchungen wird Dissipation und die damit verbundene Dekohärenz im Schwingungsfreiheitsgrad als maßgebliche Erklärung für die experimentellen Resultate identifiziert. Die Beziehung zwischen Dekohärenz und Dissipation in Morse-artigen Systemen bei Temperatur Null wird genauer untersucht. Das Dissipationsmodell wird auch verwendet, um Experimente mit K-2 Dimeren auf Heliumtröpfchen zu untersuchen. Wie sich beim Vergleich von numerischen Simulationen mit experimentellen Daten allerdings herausstellt, treten weitere Mechanismen auf. Eine gute Übereinstimmung wird erzielt, wenn man eine schnelle Desorption der Dimere berücksichtigt. Wir stellen fest, dass ein Dekohärenzprozess im elektronischen Freiheitsgrad des Moleküls auftritt. Schlussendlich sind wir in der Lage herauszufinden, ob Suprafluidität des Wirts in diesen Experimenten eine Rolle spielt.
7

Wellenleiterquantenelektrodynamik mit Mehrniveausystemen

Martens, Christoph 18 January 2016 (has links)
Mit dem Begriff Wellenleiterquantenelektrodynamik (WQED) wird gemeinhin die Physik des quantisierten und in eindimensionalen Wellenleitern geführten Lichtes in Wechselwirkung mit einzelnen Emittern bezeichnet. In dieser Arbeit untersuche ich Effekte der WQED für einzelne Dreiniveausysteme (3NS) bzw. Paare von Zweiniveausystemen (2NS), die in den Wellenleiter eingebettet sind. Hierzu bediene ich mich hauptsächlich numerischer Methoden und betrachte die Modellsysteme im Rahmen der Drehwellennäherung. Ich untersuche die Dynamik der Streuung einzelner Photonen an einzelnen, in den Wellenleiter eingebetteten 3NS. Dabei analysiere ich den Einfluss dunkler bzw. nahezu dunkler Zustände der 3NS auf die Streuung und zeige, wie sich mit Hilfe stationärer elektrischer Treibfelder gezielt auf die Streuung einwirken lässt. Ich quantifiziere Verschränkung zwischen dem Lichtfeld im Wellenleiter und den Emittern mit Hilfe der Schmidt-Zerlegung und untersuche den Einfluss der Form der Einhüllenden eines Einzelphotonpulses auf die Ausbeute der Verschränkungserzeugung bei der Streuung des Photons an einem einzelnen Lambda-System im Wellenleiter. Hier zeigt sich, dass die Breite der Einhüllenden im k-Raum und die Emissionszeiten der beiden Übergänge des 3NS die maßgeblichen Parameter darstellen. Abschließend ergründe ich die Emissionsdynamik zweier im Abstand L in den Wellenleiter eingebetteter 2NS. Diese Dynamik wird insbesondere durch kavitätsartige und polaritonische Zustände des Systems aus Wellenleiter und Emitter ausschlaggebend beeinflusst. Bei der kollektiven Emission der 2NS treten - abhängig vom Abstand L - Sub- bzw. Superradianz auf. Dabei nimmt die Intensität dieser Effekte mit längerem Abstand L zu. Diese Eigenart lässt sich auf die Eindimensionalität des Wellenleiters zurückführen. / The field of waveguide quantum electrodynamics (WQED) deals with the physics of quantised light in one-dimensional (1D) waveguides coupled to single emitters. In this thesis, I investigate WQED effects for single three-level systems (3LS) and pairs of two-level systems (2LS), respectively, which are embedded in the waveguide. To this end, I utilise numerical techniques and consider all model systems within the rotating wave approximation. I investigate the dynamics of single-photon scattering by single, embedded 3LS. In doing so, I analyse the influence of dark and almost-dark states of the 3LS on the scattering dynamics. I also show, how stationary electrical driving fields can control the outcome of the scattering. I quantify entanglement between the waveguide''s light field and single emitters by utilising the Schmidt decomposition. I apply this formalism to a lambda-system embedded in a 1D waveguide and study the generation of entanglement by scattering single-photon pulses with different envelopes on the emitter. I show that this entanglement generation is mainly determined by the photon''s width in k-space and the 3LS''s emission times. Finally, I explore the emission dynamics of a pair of 2LS embedded by a distance L into the waveguide. These dynamics are primarily governed by bound states in the continuum and by polaritonic atom-photon bound-states. For collective emission processes of the two 2LS, sub- and superradiance appear and depend strongly on the 2LS''s distance: the effects increase for larger L. This is an exclusive property of the 1D nature of the waveguide.

Page generated in 0.0882 seconds