• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2337
  • 1068
  • 583
  • 274
  • 103
  • 47
  • 39
  • 24
  • 23
  • 23
  • 18
  • 18
  • 11
  • 10
  • 8
  • Tagged with
  • 5223
  • 969
  • 824
  • 668
  • 595
  • 479
  • 409
  • 388
  • 372
  • 336
  • 311
  • 303
  • 276
  • 275
  • 264
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
761

Nanoparticules lipidiques de type Janus à compartiment superparamagnétique : du procédé de mise en oeuvre aux applications théranostiques / Lipidic Janus Nanoparticles with superparamagnetic compartment : from implementation to theranostic applications.

Millart, Elodie 15 December 2017 (has links)
Depuis quelques années, notre laboratoire développe des nanoparticules lipidiques bicompartimentées originales produites par homogénéisation haute pression, un procédé transposable à grande échelle, à partir d’excipients pharmaceutiques validés par différentes pharmacopées (Eur., USP, JP). Ces particules appartiennent ainsi à la famille des nano-objets Janus puisqu’elles sont organisées en deux sous-structures juxtaposées : une moitié est constituée d’une gouttelette huileuse alors que l’autre moitié est composée d’une structure vésiculaire et renferme un cœur aqueux délimité par une bicouche phospholipidique. En plus de la biocompatibilité intrinsèque des lipides constituants, un tel système représente un outil potentiellement très intéressant et valorisable du point de vue pharmaceutique et biomédical capable d’incorporer séparément et de co-véhiculer des substances hydrophiles et lipophiles aux activités distinctes, par exemple un agent d’imagerie médical et un principe actif pour coupler diagnostique et thérapie. Ici, nous nous sommes intéressés à charger les nanoparticules Janus avec un fluide magnétique composé de nanocristaux d’oxyde de fer (ferrofluide, FF), actif en tant qu’agent de contraste efficace en IRM, étant magnétiquement contrôlable et permettant d’envisager un traitement par hyperthermie. Tour à tour, des FF hydrophiles ou lipophiles compatibles avec le procédé de production ont été développés en étudiant différentes voies de stabilisation des nanocristaux en fonction du compartiment d’encapsulation. / In recent years, our team has developed original compartmented lipid nanometer-sized particles produced by high pressure homogenization, a scalable process, with pharmaceutically approved excipients. The particles actually belong to the family of Janus nano-objects as they are organized in two juxtaposed substructures : one half is a droplet of liquid-state lipids while the other half is vesicle-like and encloses an aqueous core delimited by a phospholipid-containing bilayer shell. Added to the intrinsic biocompatibility of the constituting lipids, such a system provides a potentially very valuable tool in pharmaceutical and biomedical fields, able to separately incorporate and co-convey hydrophilic and lipophilic substances with distinct activities, for example, a medical imaging agent and a drug for coupling diagnosis and therapy. Here, we are interested in loading Janus nanoparticles with a magnetic fluid composed of superparamagnetic iron oxide nanocrystals (ferrofluid, FF), indeed as efficient contrast agent for MRI, being magnetically targetable and providing ability for hyperthermia treatment. Alternately, hydrophilic or lipophilic FF compatible with the production process have been developed by investigating different stabilization pathways of the nanocrystals depending on the encapsulation compartment.
762

Fabricação de plataformas baseadas em nanomembranas auto-enroladas para caracterização elétrica de metal-organic frameworks (MOFs) /

Camargo, Davi Henrique Starnini de. January 2019 (has links)
Orientador: Carlos Cesar Bof Bufon / Banca: Antonio Riul Junior / Banca: Elidiane Cipriano Rangel / Resumo: Após mais de duas décadas de intensa investigação em pontos quânticos, nanopartículas e nanofios, as nanomembranas têm representado uma terceira onda de pesquisa em nanomateriais. Além do ponto de vista de pesquisa básica, esse novo tipo de nanoestrutura tem possibilitado o desenvolvimento de uma geração de dispositivos com novas funcionalidades e aplicação em diversas áreas do conhecimento como: energia, biotecnologia, microeletrônica e eletrônica molecular. Em nanomembranas, tanto o esforço de compressão como o de tração podem ser precisamente controlados de modo a gerar padrões e formas distintas como micro-tubos por exemplo. Além disso, pelo fato de serem finas, elas podem ser integradas em outros sistemas, como é o caso dos circuitos eletrônicos, por meio de combinações de técnicas de micro- e nano-fabricação. As estruturas e os padrões gerados podem ser funcionalizados com camadas orgânicas trazendo para o sistema inorgânico seletividade química e bioquímica, bem como a possibilidade de integração em sistemas biológicos. Foi desenvolvido neste trabalho uma plataforma baseada nas nanomembranas auto-enroladas que possibilitou a incorporação de filmes ultrafinos (< 20 nm) de Metal-organic frameworks (MOF) para estudo de transporte e injeção de cargas, que até o momento não foi reportado pela literatura. Como resultado, foi possível observar efeitos de resistência diferencial negativa (NDR), de modo inédito, neste tipo de material (SURMOF HKUST-1). Para o desenvolvimento de... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: After many years of investigation in quantum dots, nanoparticles, and nanowires, nanomembranes has been considered a new research area in nanomaterials. Besides fundamental aspects, this nanostructure has allowed the development of a new generation of devices with new functionalities and applications in several areas such as energy, biotechnology, microelectronics and molecular electronics. In nanomembranes, the tensile and compressive forces can be precisely controlled to create different patterns and geometries as micro-tubes, for instance. Besides that, the low thickness allows them to be integrated onto another system (electronic circuits, for instance) through the combination of micro and nano-fabrication techniques. The structures and patterns can be functionalized with organic layers adding chemical and bio-chemical selectivity to the inorganic system, as well the possibility to integrate them in biological systems. Was developed at this work a system based on self-rolled up nanomembranes where was possible to study the electrical transport trough Metal-organic-frameworks thin films ( < 20 nm), that has not been reported by the literature yet. As a result, was observed the negative differential resistance effect (NDR), for the first time in the SURMOF HKUST-1. To develop this present work, were used several techniques as photolithography, thin film deposition and dry etching to fabricate the devices. To characterize the fabricated devices, scanning electron microscopy ... (Complete abstract click electronic access below) / Mestre
763

Silane Modulation of Protein Conformation and Self-Assembly

Giasuddin, Abul Bashar Mohammad 01 May 2018 (has links)
This research focused on development of nanoparticle- based therapeutics against amyloid fibrils. Amyloid fibrils are associated with various diseases such as Parkinson’s, Huntington’s, mad cow disease, Alzheimer’s, and cataracts. Amyloid fibrils develop when proteins change their shape from a native form to a pathogenic “misfolded” form. The misfolded proteins have the ability to recruit more native proteins into the pathogenic forms, which self-assemble into amyloid fibrils that are hallmarks of the various protein-misfolding diseases listed above. Amyloid fibrils are highly resistant to degradation, which may contribute to the symptoms of amyloid diseases. Synthetic drugs, natural compounds, and antibodies are widely explored for potential to stop pathogenic protein assembly or to promote fibril degradation and clearance, but to date have had little success in relieving symptoms in clinical trials. In this research, I have synthesized fluorine-containing silica nanoparticles (NPs), and tested their fibril-inhibiting activity against amyloid fibrils formed by a non-pathogenic protein, β-lactoglobulin (BLG). These fluoro-silica NPs prevented BLG amyloid formation, whereas non-fluorinated nanoparticle analogs did not inhibit fibrillation under the same reaction conditions. The fluoro-silica NPs interacted with the BLG protein in a manner that prevented the protein from adopting a form that could self-assemble into fibrils. Additional applications of the NPs were explored as small-molecule drug-delivery systems; such that multiple functionalities could be introduced into a single nano- therapeutic.
764

Study of X-ray Absorption Spectroscopy of Heavy Elements and Transient Chemical Species / 重元素と短寿命な反応中間体のXAFS分光

Asakura, Hiroyuki 23 March 2015 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(工学) / 乙第12929号 / 論工博第4122号 / 新制||工||1626(附属図書館) / 32139 / (主査)教授 田中 庸裕, 教授 田中 勝久, 教授 佐藤 啓文 / 学位規則第4条第2項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
765

Activatable fluorescence imaging of macrophages in atherosclerotic plaques using iron oxide nanoparticles conjugated with indocyanine green / インドシアニングリーン標識酸化鉄ナノ粒子による動脈硬化性プラークにおけるマクロファージのアクチベイタブル蛍光イメージング

Ikeda, Hiroyuki 26 November 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21418号 / 医博第4408号 / 京都大学大学院医学研究科医学専攻 / (主査)教授 木村 剛, 教授 髙橋 良輔, 教授 竹内 理 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
766

Investigation of the effects of zinc oxide nanoparticles and synthesized cellulose nanocrystals (CNCs) on emulsion-based drilling fluids

Aka, Tiemele Wilfried Anderson January 2019 (has links)
A thesis submitted to the Faculty of Engineering and the Built Environment in fulfilment of the requirement for the Degree of Masters of Science, University of the Witwatersrand, Johannesburg, 2019 / Drilling Mud holds an important role in the drilling process in such a way that it is a determinant key to the success of the operation as well as the money spent throughout the process. Indeed the success and the cost of the operation can be severely impacted by some challenges experienced while drilling such as temperature and pressure conditions which leads to fluid loss, fluid deterioration...As a result there is a need to formulate a fluid with desirable rheological properties to withstand such undesirable parameters. Therefore this work was aimed to improve emulsion drilling fluids (EDFs) based nanoparticles with enhanced properties. Many investigations were performed to find a proper emulsion stability as well as a good drilling fluid performance. The stability of the prepared emulsion drilling fluids was done using surfactant with different concentrations for several days. After several days of preparation, the EDFs containing DTAB as surfactant have showed a better emulsion stabilizer compared to the Triton X-100 ones. In addition an investigation combining both NPs and surfactants confirmed the used of NPs to improve DF and revealed the effective use of ZnO NPs for drilling fluids application and preferentially with DTAB as surfactant. Following that result, the 2nd part of the work was based on the synthesis and characterization of CNCs as NPs to formulate EDF with DTAB as surfactant. The CNCs NPS were successfully obtained via the method of oxidation of microfibrillated cellulose through TEMPO-mediate and after characterization using TEM, spherical NPs with small size varying from 10-50nm were observed. The FANN® Model 35 viscometer served to display the behavior of the shear stress and viscosity of the prepared fluids against variable shear rate at variable NPs and temperature concentration. The rheological and filtration properties were increase with increase in CNCs content from 0.8 to 1.2% of fluid in room temperature and with an increase in temperature. / PH2021
767

Comparison of Miscanthus grass lignin with spruce lignin from organosolv process for nanoparticles production / En jämförelse mellan organosolvlignin från Miscanthusgräs och gran för nanopartikeltillverkning

la Placa, Antonia January 2020 (has links)
There is a growing global energy demand and the society is forced to shift towards renewable energy sources due to the depletion of fossil fuels. Lignocellulosic biomass is a renewable resource available in vast amounts and could therefore have the potential to become a primary source for fuel production. Lignin, as a substantial part of the biomass, is underutilized due to its complex structure which can limit the potential of applying lignin towards value- adding products. However, one way to promote lignin valorization is to produce lignin nanoparticles (LNPs) that are considered valuable in the biomedical field. The aim of this report was to investigate if different botanical origins will affect the properties of LNPs, such as size, polydispersity index, 𝜁-potential and morphology. LNPs from Miscanthus sinensis grass lignin, obtained by the organosolv process, was successfully produced via solvent exchange and compared with LNPs from spruce organosolv lignin. The experimental part resulted in Miscanthus LNPs ranging from 133.7 to 377.4 nm, where a higher initial concentration yielded larger particles, and the average ζ- potential was -38.7 mV. This work has shown that the botanical origin will affect both size and shape of LNPs produced with the same method. Miscanthus LNPs were larger in size and ellipsoidal in shape compared to the spherical spruce LNPs. The lignin concentration influenced the particle size for both origins and the difference in LNP size became more significant as the concentration increased. However, to only explore two different types of plant origins is not sufficient enough to reach a general conclusion. Also, there are many influential steps from plant origin to LNP and to reach a more generalized conclusion, it is arguable that there is a necessity to explore and determine both the applied pulping method, the process to isolate the lignin and the method used to produce the LNPs. / Det globala energibehovet ökar och samhället tvingas därmed att växla till förnybara resurser eftersom de fossila bränslena kan ta slut. Biomassa är en förnybar resurs som finns tillgänglig i stora mängder och kan därför bli en potentiell primär energikälla. Lignin, som är en väsentlig del av biomassan, används inte i lika stor utsträckning på grund av dess komplexa struktur. Komplexiteten begränsar därför användandet av lignin i värdeskapande produkter. Men en väg för att ta tillvara på lignins värdefulla egenskaper kan vara framställandet av nanopartiklar (NP), vilket öppnar upp för användning av lignin inom det biomedicinska fältet. Syftet med den här rapporten är att undersöka om lignin från olika botaniska ursprung påverkar nanopartiklarnas egenskaper, som exempelvis storlek, polydispersitet, 𝜁-potential och morfologi. NP av lignin från gräsarten Miscanthus sinensis framställdes genom solvent exchange och jämfördes sedan med NP från granlignin. Både miscanthus- och granligninet var isolerat genom organosolvprocessen. Den experimentella delen av arbetet visade att NP from miscanthuslignin gav partiklar inom intervallet 133.7 to 377.4 nm, där högre koncentration gav större partiklar, och medelvärdet för 𝜁-potentialen var -38.7 mV. Resultatet från arbetet visade att det botaniskt ursprunget påverkar både storleken och formen på NP av lignin som framställts med samma metod. NP från miscanthuslignin var större och hade en mer elliptisk form, i jämförelse med de mer sfäriska partiklarna från granlignin. Ligninkoncentrationen påverkade partikelstorleken för båda typerna av lignin, dessutom blev skillnaden i partikelstorlek större när koncentrationen ökade. Däremot var det svårt att dra någon generell slutsats genom att bara undersöka två olika ursprung. Eftersom det finns flera steg i processen från växters ursprung till NP av lignin som kan påverka partiklarnas egenskaper kan det vara nödvändigt att utforska både den tillämpade massaprocessen, isoleringsmetoden och metoden som används för att framställa NP av lignin.
768

Structure-Property Relationships of Polymer Gels and Concentrated Suspensions Modified with Anisotropic Nanoparticles

Zabet, Mahla 04 May 2018 (has links)
Soft materials are ubiquitous in every aspect of our daily life. These materials composed of a wide range of subfields including surfactants, foams, emulsions, pastes, slurries, polymers, gels, and colloidal suspensions. In recent years, there has been a great interest focusing on the understanding of the macroscopic properties of various types of soft materials as a function of their microstructures. For example, the structure-property relationship of physically-associating triblock copolymer gels can be controlled by selecting different types of solvents and changing the temperature. In these systems, gelation occurs due to the significant changes in the solubility of one or more of the blocks with temperature compared to the other blocks. Therefore, changing the temperature can lead to the structural transitions and macroscopic properties. The other strategy that can be used to modify the macroscopic performance of polymer gels is through the incorporation of nanoparticles, such as graphene nanoplatelets and nanotubes. The addition of nanoparticles can also affect the mechanical properties of concentrated suspensions in which, understanding the structure/flow properties is vital for processing and manufacturing of a product. Despite significant advances in the field of soft materials, our understanding in linking the structure-property relationships of polymer gels and concentrated suspensions is incomplete. With this perspective, in this dissertation, shear-rheometry and scattering techniques were used to understand the structural changes of the self-assembled triblock copolymer gels over a wide length-scale and broad temperature-range. Graphene nanoplatelets have been incorporated into this system to investigate the self-assembly behavior and mechanical properties as a function of graphene concentration. On the other hand, in concentrated suspensions of functionalized nanoparticles in a low-molecular- weight polymeric media, the effect of nanoparticles on the rheological properties were investigated. The present work provides a better understanding of the nanoparticles’contributions on microstructure and mechanical behavior of soft materials.
769

AMPLIFICATION OF CHIRALITY BY GOLD NANOPARTICLES WITH CHIRAL LIGAND SHELLS DETECTED IN NEMATIC LIQUID CRYSTALS

Nemati, Ahlam, Dr. 04 August 2021 (has links)
No description available.
770

Novel gold nanoparticles of drought tolerance enabler GYY4137

Binase, Ntombikayise January 2019 (has links)
>Magister Scientiae - MSc / Different nanoparticles have the ability to improve plant tolerance to drought stress. In the study we report for the first time novel morpholin-4-ium 4-methoxyphenyl (morpholino) phosphinodithioate capped- gold nanoparticles (GYY4137-capped AuNPs). The GYY4137 is a slow releasing hydrogen sulfide (H2S) donor. The GYY4137 AuNPs compared to preliminary experiments of L-serine and L-threonine gold nanoparticles. The nanoparticles were prepared using a simple reflux reduction method in a rolling boil flask at 80 oC. The uncapped GYY4137-AuNPs were relatively stable and had surface plasmon resonance at 562 nm compared to 524 nm and 560 nm of serine-AuNPs and threonine-AuNPs. The nanoparticles were capped with different concentrations (0.1-5 %) of water-soluble poly (ethylene) glycol (PEG) (Mw300) and 0.2% chitosan. The PEG did not fully encapsulate the gold nanoparticles, while the chitosan successfully produced positively charged gold nanoparticles. The formation of chitosan capped GYY4137-AuNPs were verified with UV-Visible spectroscopy (UV-Vis), High Resolution Transmission electron microscopy (HRTEM), Dynamic Light scattering (DLS) and the Zetasizer. The UV-Vis, HRTEM and STEM verified chitosan capped nanoparticles had a surface plasmon resonance peak at 560 nm, with icosahedral, tetrahedron and spherical shaped nanoparticles as the serine-AuNPs that absorb at 560 nm. The agglomerated threonine-AuNPs had a maximum absorbance peak at 524 nm. The chitosan GYY4137-AuNPs had hydrodynamic size of 347.9 nm and zeta potential of + 47 mV, while serine-AuNPs and threonine-AuNPs had hydrodynamic size of 110 nm, zeta potential of -2.9 mV and -230 mV respectively. The polydispersity index (PDI) of the chitosan capped gold nanoparticles was 0.357 compared to 0.406 of both the amino acid gold nanoparticles. The polydispersity index (PDI) showed that the nanoparticles were polydispersed nanoparticles with broad size range as confirmed by the HRTEM and STEM results/ of chitosan capped GYY4137-AuNPs. The sizes of the nanoparticles were 100 nm and 60 nm for GYY4137-AuNPs while the size serine-AuNPs were 60 nm. The gold nanoparticles structural compositions were further confirmed by energy-dispersive X-ray spectrometry (EDX) and Attenuated total reflection infrared spectroscopy (ATR-IR). EDX results proved successful gold nanoparticles synthesis by presence of the element Au in all three nanoparticles and the chitosan GYY4137-AuNPs had 48. 56 wt. % of gold. The FTIR-ATR new bands formation shows that new chemical bonds are formed between the reducing agents, the precursor gold salt solution and capping agents. The shifts showed successful encapsulation with chitosan in GYY4137-AuNPs. The chitosan encapsulation improved surface charge and reactivity of the gold nanoparticles to improve delivery of the hydrogen sulfide donor GYY4137 for later applications to plants.

Page generated in 0.1166 seconds