• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2337
  • 1068
  • 583
  • 274
  • 103
  • 47
  • 39
  • 24
  • 23
  • 23
  • 18
  • 18
  • 11
  • 10
  • 8
  • Tagged with
  • 5223
  • 969
  • 824
  • 668
  • 595
  • 479
  • 409
  • 388
  • 372
  • 336
  • 311
  • 303
  • 276
  • 275
  • 264
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
891

Deleterious Synergistic Effects of Concurrent Magnetic Field and Superparamagnetic (Fe3O4) Nanoparticle Exposures on CHO-K1 Cell Line

Coker, Zachary 05 1900 (has links)
While many investigations have been performed to establish a better understanding of the effects that magnetic fields and nanoparticles have on cells, the fundamental mechanisms behind the interactions are still yet unknown, and investigations on concurrent exposure are quite limited in scope. This study was therefore established to investigate the biological impact of concurrent exposure to magnetic nanoparticles and extremely-low frequency magnetic fields using an in-vitro CHO-K1 cell line model, in an easily reproducible manner to establish grounds for further in-depth mechanistic, proteomic, and genomic studies. Cells were cultured and exposed to 10nm Fe3O4 nanoparticles, and DC or low frequency (0Hz, 50Hz, and 100Hz) 2.0mT magnetic fields produced by a Helmholtz coil pair. The cells were then observed under confocal fluorescence microscopy, and subject to MTT biological assay to determine the synergistic effects of these concurrent exposures. No effects were observed on cell morphology or microtubule network; however, cell viability was observed to decrease more drastically under the combined effects of magnetic field and nanoparticle exposures, as compared to independent exposures alone. It was concluded that no significant difference was observed between the types of magnetic fields, and their effects on the nanoparticle exposed cells, but quite clearly there are deleterious synergistic effects of these concurrent magnetic field and nanoparticle exposure conditions.
892

FePt magnetic nanoparticles : syntheses, functionalisation and characterisation for biomedical applications

Chen, Shu January 2011 (has links)
Iron platinum (FePt) has attracted growing interest because of its high Curie temperature, magneto-crystalline anisotropy and chemical stability. Nanoparticles (NPs) made of this alloy are promising candidates for a wide range of biomedical applications including magnetic separation, magnetic targeted drug delivery, hyperthermia for cancer therapy and also as magnetic resonance imaging (MRI) contrast agents. This thesis presents the synthesis, functionalization and characterization of FePt NPs along with a toxicity study and an investigation into their application as MRI contrast agents. Regarding their synthesis, different approaches have been explored including the co-reduction of Fe and Pt precursors in an aqueous media, the thermal decomposition in a conventional high-boiling solvent such as benzyl ether, and in low-melting organic salts (ionic liquids). The data revealed an inhomogeneous composition distribution of Fe and Pt between particles obtained in aqueous media, due to the iron salts hydrolysis, and a mismatch in the co-reduction kinetic of the two metal precursors. While the iron content in the NPs could be increased by using more hydrolytically stable iron precursors or stronger reducing agents, there are remaining limiting parameters which prevent further Fe content increase in NPs. In contrast, by excluding the water from the reaction system and using a Fe²⁻ iron precursor, homogenous 1:1 Fe to Pt ratio NPs can be obtained through a modified thermal decomposition pathway in benzyl ether. Based on the study of synthesis in this conventional chemical, the potential of ionic liquids (ILs) to be used as novel solvents for FePt NPs synthesis was further explored. It was then demonstrated that ionic liquids (ILs) can not only be used as a solvent for synthesis of FePt NPs, but also can provide an exciting alternative pathway to direct synthesis fct-FePt NPs. In the context of the bioapplication of FePt NPs, a family of FePt NPs was specifically designed to enhance their MRI contrast agents properties. In contrast with previous reports, this thesis demonstrates that FePt NPs can be made non-toxic and provides the first data on their cellular uptake mechanisms. A six times increase in the FePt based T₂ contrast properties compared to clinical iron oxide NPs is reported. The relationship between the MRI contrast properties and the NPs architecture is explored and rationalised as the basis for the design of NPs as enhanced MRI contrast agents. Finally, the first observations of cellular and in vivo MR imaging with FePt NPs is also reported. This study opens the way for several applications of FePt NPs such as regenerative medicine and stem cell therapy, thus providing a bio-platform to develop novel diagnostic and therapeutic agents.
893

Hydrothermal Synthesis of Carbon Nanoparticles for Various Applications

Sadhanala, Hari Krishna January 2016 (has links) (PDF)
Carbon nanoparticles (CNPs) have drawn great attention in the last few years owing to their unique properties such as excellent water solubility, chemical stability, inertness, low toxicity, good bio-compatibility, and tunable photo physical properties. Recently, researchers have focused on hetero atom (N, S and B) doped CNPs due to their excellent properties. These properties make the CNPs and doped CNPs as potential candidates for a wide range of applications. For example, metal ion detection in aqueous solution, bio-imaging, bio-sensing, photovoltaic devices, cleavage of deoxyribonucleic acid (DNA), and catalysis. Therefore, CNPs are alternative to inorganic semiconductor nanoparticles. However, CNPs with diameter less than 10 nm have been prepared using various approaches including top down and bottom methods. Cutting the bulk carbon from high dimensional to zero dimensional by using either physical or chemical process are classified as top down method. Bottom up method refers the conversion of organic precursor to nano-carbon by using thermal pyrolysis, microwave based hydrothermal method, cage opening of C60 molecules. In the present work, I have dealt with the facile synthesis of CNPs and different hetero atom doped carbon nanoparticles (N-CNPs, B-CNPs, and BN-CNPs) using the hydrothermal method. Based on their intriguing physical and chemical properties, these CNPs/doped-CNPs have been explored for various applications such as (i) metal-free catalysts, (ii) color tunability from red to blue and bio-imaging, (iii) ammonia sensing, (iv) white light generation, and (v) detection of picric acid (PA) in aqueous solution. Finally, I have presented 3D nanodendrites of N-CNPs and Pd NPs and their excellent catalytic mass activity for methanol electro-oxidation and ultra-fast reduction of 4-nitrophenol.
894

Monodisperse Gold Nanoparticles : Synthesis, Self-Assembly and Fabrication of Floating Gate Memory Devices

Girish, M January 2013 (has links) (PDF)
The emergence of novel electronic, optical and magnetic properties in ordered two-dimensional (2D) nanoparticle ensembles, due to collective dipolar interactions of surface plasmons or excitons or magnetic moments have motivated intense research efforts into fabricating functional nanostructure assemblies. Such functional assemblies (i.e., highly-integrated and addressable) have great potential in terms of device performance and cost benefits. Presently, there is a paradigm shift from lithography based top-down approaches to bottom-up approaches that use self-assembly to engineer addressable architectures from nanoscale building blocks. The objective of this dissertation was to develop appropriate processing tools that can overcome the common challenges faced in fabricating floating gate memory devices using self-assembled 2D metal nanoparticle arrays as charge storage nodes. The salient challenges being to synthesize monodisperse nanoparticles, develop large scale guided self-assembly processes and to integrate with Complementary Metal Oxide Semiconductor (CMOS) memory device fabrication processes, thereby, meeting the targets of International Technology Roadmap for Semiconductors (ITRS) – 2017, for non-volatile memory devices. In the first part of the thesis, a simple and robust process for the formation of wafer-scale, ordered arrays using dodecanethiol capped gold nanoparticles is reported. Next, the results of ellipsometric measurements to analyze the effect of excess ligand on the self-assembly of dodecanethiol coated gold nanoparticles at the air-water interface are discussed. In a similar vein, the technique of drop-casting colloidal solution is extended for tuning the interparticle spacing in the sub-20 nm regime, by altering the ligand length, through thiol-functionalized polystyrene molecules of different molecular weights. The results of characterization, using the complementary techniques of Atomic Force Microscopy (AFM) and Field-Emission Scanning Electron Microscopy (FESEM), of nanoparticle arrays formed by polystyrene thiol (average molecular weight 20,000 g/mol) grafted gold nanoparticles (7 nm diameter) on three different substrates and also using different solvents is then reported. The substrate interactions were found to affect the interparticle spacing in arrays, changing from 20 nm on silicon to 10 nm on a water surface; whereas, the height of the resultant thin film was found to be independent of substrate used and to correlate only with the hydrodynamic diameter of the polymer grafted nanoparticle in solution. Also, the mechanical properties of the nanoparticle thin films were found to be significantly altered by such compression of the polymer ligands. Based on the experimental data, the interparticle spacing and packing structure in these 2D arrays, were found to be controlled by the substrate, through modulation of the disjoining pressure in the evaporating thin film (van der Waals interaction); and by the solvent used for drop casting, through modulation of the hydrodynamic diameter. This is the first report on the ability to vary interparticle spacing of metal nanoparticle arrays by tuning substrate interactions alone, while maintaining the same ligand structure. A process to fabricate arrays with square packing based on convective shearing at a liquid surface induced by miscibility of colloidal solution with the substrate is proposed. This obviates the need for complex ligands with spatially directed molecular binding properties. Fabrication of 3D aggregates of polymer-nanoparticle composite by manipulating solvent-ligand interactions is also presented. In flash memory devices, charges are stored in a floating gate separated by a tunneling oxide layer from the channel, and the tunneling oxide thickness is scaled down to minimize power consumption. However, reduction in tunneling oxide thickness has reached a stage where data loss can occur due to random defects in the oxide. Using metal nanoparticles as charge-trapping nodes will minimize the data loss and enhance reliability by compartmentalizing the charge storage. In the second part of the thesis, a scalable and CMOS compatible process for fabricating next-generation, non-volatile, flash memory devices using the self-assembled 2D arrays of gold nanoparticles as charge storage nodes were developed. The salient features of the fabricated devices include: (a) reproducible threshold voltage shifts measured from devices spread over cm2 area, (b) excellent retention (>10 years) and endurance characteristics (>10000 Program/Erase cycles). The removal of ligands coating the metal nanoparticles using mild RF plasma etching was found, based on FESEM characterization as well as electrical measurements, to be critical in maintaining both the ordering of the nanoparticles and charge storage capacity. Results of Electrostatic Force Microscope (EFM) measurements are presented, corroborating the need for ligand removal in obtaining reproducible memory characteristics and reducing vertical charge leakage. The effect of interparticle spacing on the memory characteristics of the devices was also studied. Interestingly, the arrays with interparticle spacing of the order of nanoparticle diameter (7 nm) gave rise to the largest memory window, in comparison with arrays with smaller (2 nm) or larger interparticle spacing (20 nm). The effect of interparticle spacing and ligand removal on memory characteristics was found to be independent of different top-oxide deposition processes employed in device fabrication, namely, Radio-frequency magnetron sputtering (RF sputtering), Atomic Layer Deposition (ALD) and electron-beam evaporation. In the final part of the thesis, a facile method for transforming polydisperse citrate capped gold nanoparticles into monodisperse gold nanoparticles through the addition of excess polyethylene glycol (PEG) molecules is presented. A systematic study was conducted in order to understand the role of excess ligand (PEG) in enabling size focusing. The size focusing behavior due to PEG coating of nanoparticles was found to be different for different metals. Unlike the digestive ripening process, the presence of PEG was found to be critical, while the thiol functionalization was not needed. Remarkably, the amount of adsorbed carboxylate-PEG mixture was found to play a key role in this process. The stability of the ordered nanoparticle films under vacuum was also reported. The experimental results of particle ripening draw an analogy with the well-established Pechini process for synthesizing metal oxide nanostructures. The ability to directly self-assemble nanoparticles from the aqueous phase in conjunction with the ability to transfer these arrays to any desired substrate using microcontact printing can foster the development of applications ranging from flexible electronics to sensors. Also, this approach in conjunction with roll-to-roll processing approaches such as doctor-blade casting or convective assembly can aid in realizing the goal of large scale nanostructure fabrication without the utilization of organic solvents.
895

Probing The Origin Of Second Harmonic Generation From Copper Nanoparticles In Solution By Hyper-Rayleigh Scattering

Chandra, Manabendra 09 1900 (has links)
In recent years, coinage metal nanoparticles have emerged as materials with largest quadratic optical nonlinearity. Their first hyperpolarizabilities (β) are very high (105-106 x 10-30 esu) but such large values were quite unexpected because of their apparently centrosymmetric bulk structure. Only a small second harmonic generation (SHG) from coinage metal nanoparticles is expected through higher order multipolar (e.g., quadrupolar) polarization mechanisms. Various possible reasons have been attributed to the observation of large β values in coinage metal nanoparticles. They are: 1) Particles may not be overall centrosymmetric (as appears from the TEM pictures) which, in turn, can make SHG electric dipole allowed, 2) Several polarization mechanisms (dipolar, quadrupolar, retardation, etc.) may be operating simultaneously to render SHG very efficient, 3) SHG can be resonance enhanced if the incident or SH photons fall within the surface plasmon resonance (SPR) absorption bands or higher energy interband transitions in the metal particles, and 4) Surface capping agents used for stabilization of the nanoparticles in solution alter the SH response. It is, therefore, important to experimentally find out which of the above mentioned possibilities are dominant and under what conditions we can identify the contribution of various mechanisms to the overall SHG response of the coinage metal nanoparticles. In this thesis work, the origin of SHG from copper (one of the coinage metals) nanoparticles has been investigated using hyper-Rayleigh scattering (HRS). In chapter 1, an introduction to metal nanoparticles and their optical properties have been presented. A general introduction to second order nonlinear optics and various methods for the determination of first hyperpolarizability are provided. A literature survey on the second order NLO properties of metal nanoparticles is also done. At the end of the chapter, the motivation of the work done is outlined. In chapter 2, the experimental set-ups for unpolarized and polarization resolved hyper-Rayleigh scattering (HRS) measurements at different wavelengths are described. Generation of IR wavelength of 1543 and 1907 nm using stimulated Raman scattering in gases have been presented in this chapter. In chapter 3, synthesis and characterization of copper nanoparticles are described. Four different size copper nanoparticles (5, 9, 25, and 55 nm) were prepared by laser ablation. Size dependencies of first hyperpolarizability were investigated at different wavelengths and it was found that β increases with increasing size of the particle and that the SHG originates mainly from the surface of the particle. Dispersion in first hyperpolarizabilities of the copper nanoparticles has also been investigated and we find that at incident and SH wavelengths far from the SPR absorption band, the hyperpolarizability is large compared to molecular hyperpolarizabilities. In chapter 4, the results of polarization resolved HRS measurements on copper nanoparticles of five different sizes at four different wavelengths (738, 1064, 1543 and 1907 nm) are reported. Polarization analyses show that at small particle size to wavelength (d/λ) ratio the dipolar contribution to SHG is dominant whereas the quadrupolar and retardation effects become important at larger d/λ values. The “small particle limit” in the SHG from coinage metal nanoparticles has been assessed based on our results on copper and others’ results on silver and gold nanoparticles. In chapter 5, the effect of surface capping on the first hyperpolarizability of copper nanoparticles is investigated. Polyvinyl pyrrolidone (PVP) has been used as a capping agent. The results obtained for bare and capped copper nanoparticles show that capping enhances the hyperpolarizability by a factor of 2. In the last chapter 6, general conclusions drawn on SHG from coinage metal nanoparticles based on this work are presented along with future perspectives.
896

Photophysics of Thiophenosalicylaldimine-functionalized G1-Polyprolyleniminato-Copper Telluride/Antimonide core-shell Nanomaterials

Ramoroka, Morongwa Emmanuel January 2018 (has links)
Magister Scientiae - MSc (Chemistry) / This work involves the synthesis of copper telluride-polypropylenimine tetra(5-(2-thienyl) salicylaldimine) (CuTe@PPI) and copper antimonide-polypropylenimine tetra(5-(2-thienyl) salicylaldimine) (CuSb@PPI) core-shell nanoparticles (NPs), using two-pots and one-pot synthesis methods, respectively. Their morphology was studied by X-ray diffraction spectroscopy (XRD), high resolution transmission electron microscopy (HRTEM) and high resolution scanning electron microscopy (HRSEM); while their structures were characterized by Fourier transform infrared spectroscopy (FTIR) and elemental analysis. Photophysical properties of the core-shell NPs were determined from ultraviolet-visible absorption spectroscopy (UV-Vis) and photoluminescence spectroscopy (PL). For core-shell NPs produced via two-pots method only CuTe@PPI exhibited ? ? ?* and n ? ?* which indicate that CuSb@PPI produced via two-pots method was unsuccessfully synthesized. The ? ? ?* and n ? ?* transitions indicate the presence of polypropylenimine tetra(5-(2-thienyl) salicylaldimine) (PPI) on the surface of CuTe NPs and CuSb NPs. FTIR confirmed coordination of PPI on the surface of CuTe NPs and CuSb NPs by showing a shift in wavenumber of C=N group bands from PPI. HR-TEM showed that the CuTe@PPI synthesized via one-pot method have a wide particles sizes distribution with an average particles size of 13.60 nm while for CuTe@PPI synthesized via two-pots it was impossible to determine the particles size due to aggregation. CuSb@PPI synthesized via twopots method and one-pot method has a wide particles sizes distribution with an average size of 7.98 nm and 11.61 nm respectively. The average particles sizes determined by HR-SEM were found to be 35.24 nm (CuTe@PPI two-pots method), 33.90 nm (CuTe@PPI one-pot method), 18.30 nm (CuSb@PPI two-pots method), and 16.18 nm (CuSb@PPI one pot method). / 2021-08-31
897

Thin Film Instabilities Mediated Self-Assembly of Polymer Grafted Nanoparticles

Sarika, C K January 2015 (has links) (PDF)
After the advent of nanotechnology, self-assembly has become an active area of research, as it being one of the few efficient methods to generate ensembles of nanostructures. In this thesis, we present studies on two dimensional self-assembly of polymer grafted nanoparticle (PGNPs) and thin film modelling approach to understand the physics involved in the self-assembly mechanism of polymeric nanoparticles. The two dimensional, hierarchical assemblies of PGNPs are created from evaporating solution films spread at the air-water interface using Langmuir-Blodgett technique. A transition in the patterns is observed with increase in concentration which is followed by a remarkable re-entrance of initial patterns with further concentration increment. The pattern is long length scale network type at low and high concentrations whereas it is short length scale distribution of clusters at intermediate concentrations. Clusters are composed of lateral arrangement of individual PGNPs. The characteristics of clusters are tailored by changing various experimental conditions such as molecular weight of the grafted chains, concentration, temperature and evaporation rate. The patterns are unaffected by the transfer surface pressure, suggesting that the self-assembly occurs in the presence of solvent via solution thin film instabilities and the resulting structures of PGNPs are frozen upon complete evaporation. Films of neat polystyrene also exhibit similar morphology and transitions in pattern length scales with initial solution concentration as observed in PGNP films. This confirms that the self-assembly of PGNPs is driven by the intrinsic nature of the grafted polymer chains. Gradient dynamics model is employed to study the stability and dynamics of polymer solution thin films by incorporating Flory Huggins free energy and concentration dependent Hamaker constant. Dispersion curves obtained from linear stability analysis of thin film equations show existence of bimodal instability in the film that corresponds to dewetting and decomposition. Phase diagram spanned by concentration and Flory parameter indicate that the thin film instability transits from dewetting to decomposition and then re-enters to dewetting with increase in concentration of the solution. Using the material parameters of the PGNP thin films for linear stability analysis, experimental observations of bimodal length scale of patterns and re-entrant nature are well explained. Nonlinear simulations which are performed to capture the evolution of patterns in the film show that the decomposition progresses through different pathways depending upon the concentration of the solution. This is explained by analyzing the local variation of spinodal parameter (curvature of the free energy per unit area) in the film. The gradient dynamics model is extended to study the stability and dynamics of evaporating solution thin films. Nonlinear simulations demonstrate that the film undergoes evaporative thinning without any significant growth of dewetting or decomposition instability initially and becomes unstable at a certain intermediate thickness where the spinodal parameter of dewetting or decomposition changes the sign. The rupture of the film (dewetting) or the phase segregation (decomposition) occurs explosively and subsequently evaporation progresses till the film attains chemical equilibrium with the ambient vapour phase. Rate of evaporation significantly affect the intermediate thickness at which the patterns emerge and thereby determines the length scale of initial patterns and instability growth rate. Quasi-steady analysis and nonlinear simulations show that the length scales of patterns of dewetting and decomposition decrease with evaporation rate and exhibit a power law behaviour. Thin films in which the solvent quality drops down with confinement due to evaporation are modelled by assuming a simple functional dependence of Flory parameter on mean film thickness. Quasi-steady analysis demonstrates that the dominating instability of such films switches from dewetting to decomposition and then returns to dewetting with increase in the initial concentration of the solution. We note that even though the functional form of Flory parameter with confinement is not exact, it represents the essential nature of the expected variation. We presume that the phenomenon discussed above is quite generic and may manifest itself in many situations where thin films of colloidal solutions undergo a decrease in the solvent quality due to confinement effects resulting in a competition between spinodal dewetting and decomposition instabilities. This will result in a competition and interplay of the different instability scales and by choosing appropriate control parameters novel self-assembled patterns can be created.
898

Élaboration par ablation laser en milieu liquide de nanoparticules métalliques : caractérisation et modélisation des réponses plasmoniques des nanoparticules d’or et d’argent / Generation of metallic nanoparticles by Pulsed-Laser Ablation in Liquids : Characterization and modelling of the plasmonics responses of gold and silver nanoparticles

Resano-Garcia, Amandine 30 November 2016 (has links)
Les nanoparticules métalliques (NPs) présentent des propriétés optiques (PO) uniques provenant de l’oscillation collective de leurs électrons. Cet effet se traduit par l'émergence d'une bande plasmon dont les caractéristiques peuvent être modulées par la taille, la forme, la nature des NPs et le milieu hôte. Il existe de nombreuses méthodes pour la préparation de ces NPs, l'une d'entre elles est l'ablation laser en milieu liquide (ALML). Cette technique offre certains avantages comme la simplicité, l’adaptabilité et des NPs dépourvues de contamination. Ses principaux inconvénients sont la productivité et le contrôle de la taille et de la forme des NPs. Ce travail est consacré à l'élaboration de NPs d’Ag par l’ALML et à l'étude théorique de leurs PO. Nous donnons dans ce manuscrit, les résultats de l'optimisation des paramètres d'élaboration conduisant à l'obtention de distributions en NPs reproductibles et contrôlées. Les PO de ces NPs sont mesurées et comparées à des modèles physiques spécifiques basés sur la théorie des milieux effectifs (EMT). L'EMT, telle que le modèle de Maxwell-Garnett, permet de décrire les PO de NPs monodisperses. Cependant, les voies de préparation classiques conduisent inévitablement vers des NPs montrant une distribution de forme et de taille qui induit des changements drastiques sur leurs PO. Le modèle SDEMT est proposée pour le calcul de la fonction diélectrique effective et du coefficient d'absorption de solutions colloïdales de NPs métalliques. Contrairement à Maxwell-Garnett, ce modèle donne une meilleure description des spectres d'absorption et d’ellipsométrie mesurés sur des échantillons contenant des NPs d’Ag et d’Au / Metal nanoparticles (NPs) exhibit unique optical properties (OP) coming from the collective oscillations of their electrons. This effect is translated by the emergence of a band of plasmon, the characteristics which can be modulated by the size, the shape and the nature of the NPs as well as by the environment of the host. There are many methods for the preparation of NPs, and one of them is the pulsed-laser ablation in liquid (PLAL). This technique offers some advantages such as simplicity, versatility and surface NP without contamination (reducing agent residues and/or stabilizers). Its main drawbacks are the lacks of productivity and control of the NP size and shape. This work is devoted to elaboration of Ag NPs by PLAL and theoretical investigation of their OP. We give here the results about the optimization of elaboration parameters leading to obtaining reproducible and controlled distributions of Ag NPs. The OP of these NPs are measured and compared to specific physical models based on the effective medium theory (EMT). Classical EMT such as Maxwell Garnett approximation allows describing the OP of monodisperse NPs. However, conventional preparation routes unavoidably conduct to NPs showing a shape and a size distribution which induces drastic changes in the OP. A SDEMT model which considers the shape dispersion is proposed for the calculation of the effective dielectric function and absorption coefficient of colloidal solution of metal NPs in water. Contrary to the conventional theory, this model gives a better description of the measured absorption and ellispometry spectra of sample containing Ag and Au NPs
899

The effect of carboxylic acids on the size and shape of Co3O4 nanoparticles: used as capping molecules and ligands in the preparation method

Thabede, P. M. 12 September 2017 (has links)
M.Tech. (Department of Chemistry, Faculty of Applied and Computer Sciences), Vaal University of Technology / This study reports the synthesis and characterization of cobalt oxide nanoparticles using a microwave technique and chemical precipitation with oxidation method. Cobalt complexes were prepared using carboxylic acids (acetic acid, heptanoic acid, and stearic acid) as ligands. The complexes were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Elemental analyses (EA). Cobalt oxide nanoparticles were synthesized from the complexes via a microwave-assisted technique. A precipitation oxidation preparation reaction was used varying different parameters like pH, time, oxidising agent, heating method and cobalt precursor. The use of the cobalt nitrate and cobalt acetate as cobalt precursors resulted in spherical and cubic nanoparticles respectively. Cobalt precursors containing a longer hydrocarbon chain length, for instance cobalt heptanoate, did not yield cobalt oxide nanoparticles with the precipitation oxidation reaction due non- solubility of the complex. Using cobalt acetate as precursor, an increase in the pH from 7.91 to 10.18 caused the cobalt oxide nanoparticles shape to become well defined cubes with a narrower size range and CoOOH needles formed when the pH was further increased to 12.26. The optimum pH of 10.18 yielded cubic cobalt oxide particles having an average size of 25.45 nm with a standard deviation of 6.12. The nanoparticle size decreased from 35.70 nm to 4.45 nm when the oxygen oxidant was replaced with hydrogen peroxide. Conventional heating with a hotplate yielded nanoparticles with a more homogenous shape and size than microwave heating. The size of the nanoparticles increased from 22.81 nm to 25.45 nm when reaction time changed from 16 hours to72 hours.
900

Toxicity of Food-Relevant Nanoparticles in Intestinal Epithelial Models

McCracken, Christie Joy 01 October 2015 (has links)
No description available.

Page generated in 0.0746 seconds