Spelling suggestions: "subject:"nanostruktur datenmaterial"" "subject:"nanostruktur ateljématerial""
81 |
Sinterverhalten von Verbunden aus nanokristallinem ZirconiumdioxidKanters, Johannes. Unknown Date (has links)
Techn. Universiẗat, Diss., 2000--Darmstadt.
|
82 |
Kolloidale Verarbeitung und Sintern von nanoskaligem TiN-PulverAlbayrak, Sener. Unknown Date (has links) (PDF)
Universiẗat, Diss., 1997--Saarbrücken. / Erscheinungsjahr an der Haupttitelstelle: 1997.
|
83 |
Thermische Entwicklung atomarer freier Volumen und Kristallisation in Si-(B)-C-N-Precursor-KeramikenReichle, Klaus Jürgen. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Stuttgart.
|
84 |
Nanokristallines Zirkondioxid für Hochtemperatur-BrennstoffzellenSeydel, Johannes. Unknown Date (has links)
Techn. Universiẗat, Diss., 2003--Darmstadt.
|
85 |
Spin valve systems for angle sensor applicationsJohnson, Andrew. Unknown Date (has links)
Techn. University, Diss., 2004--Darmstadt.
|
86 |
Modeling and computer simulation of ion beam synthesis of nanostructuresStrobel, Matthias 13 October 1999 (has links)
No description available.
|
87 |
Rolled-up magnetic nanomembranesMüller, Christian 27 June 2018 (has links)
The combination of strain engineering, lithography, thin film deposition and etching techniques is an elegant approach to create single microtubes and well-defined arrays of magnetic microtubes. In this work we have successfully shown that strain engineering techniques developed for rolled-up nanomembranes can be applied to magnetic materials and material combinations. To obtain sufficiently strained nanomembranes, different substrates and sacrificial layers in combination with the magnetic layers were used. Careful tuning of the etching parameters ensured a controlled roll-up process without damage or oxidation of the magnetic layer. Additionally, rolled-up nanomembranes were further integrated in a highly parallel fashion on chip, by development and application of multi-step fabrication procedures. Based on the prepared rolled-up magnetic structures and their planar counterparts we have performed a comprehensive study of their magnetic properties, mainly under the influence of magnetic field, strain and temperature. The role of the special cylindrical or curved geometry and their impact on the magnetic properties was outlined and explained based on our understanding. Moreover, the magnetic properties were also discussed in relationship to other influencing material parameters, e.g. composition, crystallographic structure, and surface effects.
The first experimental magnetization study on rolled-up InGaAs/Fe3Si heterostructures was presented. It was demonstrated for tube arrays that the change in the geometry from a planar film to the cylindrical shape has a significant effect on the magnetization behavior.
A deeper study provided insight into the magnetic switching behavior of single tubes and arrays. Rolled-up Au/Co/Au tubes and showed that in addition to shape anisotropy, magnetostrictive anisotropy due to the anisotropic stress release can inverse the magnetization direction. Exchange coupling at ferromagnetic/antiferromagnetic interfaces due to partial oxidation of Co was observed at low temperatures. The results suggest possibilities to tune magnetic properties by controlling the tube dimensions and careful control of thin film growth parameters.
The cylindrical shape, the layer thickness the number of rotations and the type of magnetic material are proven to have a strong influence on the magnetic domain patterns and magnetization behavior. Therefore, Ni/Fe tubes have been studied by means of magneto optical Kerr effect. It was found that the magnetization reversal in rolled-up tubes with 1.2 and 2.5 windings occurs via nucleation and propagation of magnetic domain walls.
On the other hand, we have demonstrated for rolled-up Au/Co tubes that a certain magnetic layer thickness is required to observe magnetic stripe domains.
In another experiment performed with magnetic force microscopy, rolled-up Co/Pt nanomembranes with magnetic domains radially aligned due to perpendicular anisotropy, which behaves as radially polarized cylindrical magnets, were achieved.
Moreover, we have demonstrated an elegant approach to create compact MR devices based on rolled-up Co/Cu-ML nanomembranes. We have shown the magnetization behavior and the MR magnitude in comparison to the corresponding planar structures. The influence of number of Co/Cu bilayers, non-magnetic spacer layer, interface roughness and multiple windings on MR was discussed. Our fabrication method can be applied to the most common magnetic materials. Certainly, further optimization of MR towards application as magnetic sensor or magneto-fluidic sensors can be achieved by change of Co/Cu-layer thickness, increase of rolling length and reduced spacer layer thickness.
Finally, we have shown a fabrication route to realize freestanding tubes based on Ni-Mn-Ga alloys grown by molecular beam epitaxy on GaAs substrates. The evolution of structural and magnetic properties induced by roll-up was investigated in detail and showed a pronounced influence of crystallographic orientation and strain state of the Ni-Mn-Ga alloys. These insights are fundamental in order to realize thin nanomembranes and freestanding three-dimensional FSMA structures with defined composition for smart applications as compact actuators and microsensors.
Consequently, rolled-up magnetic nanomembranes offer a great chance in reducing the size of electronic components and can bring several functionalities to the device. These facts make rolled-up tubes highly attractive for the detection, stimulation and manipulation of small objects, such as ions, molecules, cells and particles. It is expected in the future, that magnetic lab-in-a-tube systems will further account in analysis of microfluidic systems. On the other hand, rolled-up structures significantly contribute to the field of shapeable magnetoelectronics.
|
88 |
Oxiddispersionsgehärtete Kupferlegierungen mit nanoskaligem GefügeKudashov, Dmitry 14 February 2003 (has links)
Die vorgestellte Arbeit verfolgte das Ziel, einen dispersionsverfestigten nanokristallinen Kupferwerkstoff mit einer guten Kombination von hoher Raumtemperaturfestigkeit und mit relativ guter Kriechfestigkeit zu entwickeln und eine Werkstoffmodellierung des mechanischen Verhaltens auf mikrostruktureller Basis vorzunehmen. Es wurde gezeigt, dass die durch das mechanische Legieren zerkleinerten Oxide (ca. 50 nm) homogen in der Kupfermatrix eingelagert werden können. Das Matrixgefüge der durch Warmpressen hergestellten ODS-Legierungen mit 3 vol.% an verschiedenen Oxidzusätzen ist durch eine Kupferkorngröße kleiner 200 nm gekennzeichnet. Die Festigkeitsbeiträge bei Raumtemperatur werden quantitativ abgeschätzt und mit den experimentellen Ergebnissen verglichen. Die Ergebnisse der Kriechverformung zeigen, dass die Dispersoide nicht nur für die Behinderung des Versetzungskriechens, sondern auch für die Behinderung des Diffusionskriechens zu berücksichtigen sind.
|
89 |
Isotropic nanocrystalline (Nd,Pr)(Fe,Co)B permanent magnets / Isotropen nanokristallinen (Nd,Pr)(Fe,Co)B-PermanentmagnetenBollero Real, Alberto 18 November 2003 (has links) (PDF)
Nanokristalline Permanentmagnete zeigen ungewöhnliche magnetische Eigenschaften aufgrund von Oberflächen- und Grenzflächeneffekten, die verschieden von denen massiver oder mikrokristalliner Materialien sind. Diese Arbeit zeigt Ergebnisse einer systematischen Untersuchung der Beziehung zwischen Mikrostruktur und magnetischen Eigenschaften von isotropen nanokristallinen (Nd,Pr)(Fe,Co)B-Permanentmagneten. Hochkoerzitive Magnete vom Typ (Nd,Pr)FeB wurden durch hochenergetisches Mahlen in der Kugelmühle oder Rascherstarrung hergestellt. Der Einfluss geringer Mengen von Zusätzen wie Dy und Zr und die Substitution von Nd durch Pr auf die magnetischen Eigenschaften wird dargestellt. Weiterhin wurde eine Einschätzung des Warmumformverhaltens dieser Materialien durchgeführt. Hochenergetisches Kugelmahlen einer Legierung mit der Anfangszusammensetzung Pr9Nd3Dy1Fe72Co8B6.9Zr0.1 führte, nach Glühbehandlung, zu fast einphasigem Magnetpulver mit einem maximalen Energieprodukt von (BH)max~140 kJm-3. Das hochenergetische Kugelmahlen wurde zu einer sehr vielseitigen Technik zur Herstellung hochleistungsfähiger Nanokompositmagnete weiterentwickelt. Das Zulegieren unterschiedlicher Anteile von weichmagnetischem alpha-Fe ist damit sehr effektiv möglich. Der Zusatz von 25 Gew.-% alpha-Fe führt zu einem hohen (BH)max=178kJm-3. Dies wird auf eine sehr effektive Austauschkopplung zwischen den hart- und weichmagnetischen Phasen zurückgeführt. Die Natur der intergranularen Wechselwirkungen kann durch die Wohlfarth´sche Remanenzanalyse (?deltaJ-plot¡§) beschrieben werden. Im speziellen wurden deltaJ-Diagramme für verschiedene (i) alpha-Fe Gehalte, (ii) Korngrößen und (iii) Austauschlängen erstellt. Es konnte gezeigt werden, dass in den Nanokompositmagneten auf Pr-Basis keine Spinumorientierung auftritt. Abschließend zeigt die Arbeit die Möglichkeit der Nutzung einer mechanisch aktivierten Gas-Festkörper-Reaktion auf, mit der eine sehr feinkörnige Mikrostruktur erhalten wird. Die Untersuchungen wurden mit stöchiometrischen Nd2(Fe1-xCox)14B-Legierungen begonnen (x=0-1). Die Verbindungen wurden unter höheren Wasserstoffdrücken und Temperaturen gemahlen, wodurch sie zu NdH2+delta und krz-(Fe,Co) (x=0-0.75) oder kfz-Co (x=1) entmischt wurden. Die Korngrößen des rekombinierten Nd2(Co,Fe)14B-Materials liegen im Bereich von 40-50 nm. / Nanocrystalline permanent magnets present unusual magnetic properties because of surface/interface effects different from those of bulk or microcrystalline materials. This work presents results of a systematic investigation of the relationship between microstructure and magnetic properties in isotropic nanocrystalline (Nd,Pr)(Fe,Co)B permanent magnets. Highly coercive (Nd,Pr)FeB-type magnets have been produced using high energy ball milling and melt-spinning. The influence of small amounts of additives, Dy and Zr, and the substitution of Nd by Pr on the microstructural and magnetic properties are shown. An assessment of the hot deformation behaviour has been carried out. Intensive milling of an alloy with starting composition Pr9Nd3Dy1Fe72Co8B6.9Zr0.1 yields, after annealing treatment, nearly single-phase magnet powders with a maximum energy product (BH)max?î140kJm-3. Co has a beneficial effect on the intrinsic magnetic properties but also on the microstructure, with a mean grain size of 20nm. Intensive milling is used to produce high-performance nanocomposite magnets by blending this latter alloy with different fractions of soft magnetic alfa-Fe. Addition of 25wt.% alfa-Fe leads to a high (BH)max=178 kJm-3 due to an effective exchange-coupling between the hard and the soft magnetic phases. The intergrain interactions between the crystallites of the nanocomposite structure are analysed. Demagnetisation recoil loops of the nanocomposite magnets show relatively open minor loops due to the exchange-spring mechanism. Information about the intergrain interactions during demagnetisation are obtained by plotting the deviation of the demagnetising remanence from the Wohlfarth-model (¡§deltaJ-plot¡¨). Exchange-coupling phenomena are studied by analysing the evolution of the corresponding deltaJ values when varying (i) the alfa-Fe content, (ii) the annealing temperature, i.e. the grain size and (iii) the measurement temperature. Low temperature measurements do not reveal any sign of spin reorientation for these Pr-based nanocomposite magnets. The work concludes showing the possibility of using a mechanically activated gas-solid reaction to obtain an effective grain refined microstructure starting from stoichiometric Nd2(Fe1-xCox)14B alloys (x=0-1). These compounds were milled under enhanced hydrogen pressure and temperature leading to their disproportionation into NdH2+delta and bcc-(Fe,Co) (x=0-0.75) or fcc-Co (x=1). Grain sizes of recombined Nd2(Fe,Co)14B materials were found to be 40-50nm.
|
90 |
Charakterisierung verschleißmindernder Hartstoff-Viellagenschichten und Optimierung ihrer mechanischen Eigenschaften durch Untersuchung der NanostrukturKolozsvari, Szilard 15 January 2006 (has links) (PDF)
Es wurden die Zusammenhänge zwischen den Herstellungsbedingungen und dem nanostrukturellen Aufbau von Multischichten, mit Rücksicht auf das mechanische Verhalten aufgeklärt. Dazu wurden durch plasmaunterstützte Gasphasenabscheidung (PACVD) Hartmetallsubstrate mit Viellagen beschichtet und vorrangig mittels analytischer Transmissionselektronenmikroskopie (TEM) charakterisiert. Als Schichkomponenten wurden hauptsächlich TiN und Al2O3 untersucht, daneben aber auch Schichtsysteme der Komponenten AlON, (TiAl)N, und (Ti,Al)ON. Darüber hinaus wurden noch TiC-aC (TiC mit amorphem Kohlenstoffanteil)-Schichten einbezogen. Ziel waren gleichmäßige Multischichten mit Korngrößen von einigen Nanometern, geringer Testur und geringer Mikrorissdichte, die hart sind und gut haften. Die TEM-Untersuchungen dienten insbesondere der Aufklärung der Nanostruktur in den Interface-Bereichen der Schichtsysteme, wobei an Hand der Elektronenenergie-Verlustspektroskopie (EELS) sowohl element- als auch phasenspezifische Signale ausgewertet wurden. Zur verbesserten Bewertung der anfallenden Datenmengen wurden z. T. faktoranalytische Methoden eingesetzt. Je nach Prozessführung der Schichtherstellung kommt es in den Interface-Bereichen zur Durchmischung der Komponenten. Insbesondere führt diffundierender Sauerstoff zur Bildung von TiO2, was sich nachteilig auf die Qualität der Schichten auswirkt. Die Tiefe der "gestörten" Zonen begrenzt die wünschenswerte Verringerung der Einzelschichtdicken. Als wirkungsvolle Gegenmaßnahme hat sich der Einbau von Kohlenstoff erwiesen, wodurch sich dünnere Einzelschichten verwirklichen lassen.
|
Page generated in 0.0875 seconds