Spelling suggestions: "subject:"nanostruktur datenmaterial"" "subject:"nanostruktur ateljématerial""
121 |
Experimental and theoretical studies on germanium-containing precursors for twin polymerizationKitschke, Philipp 10 June 2016 (has links)
Im Fokus dieser Arbeit standen zwei Ziele. Zum einem war es Forschungsgegenstand, dass Konzept der Zwillingspolymerisation auf germaniumhaltige, molekulare Vorstufen wie zum Beispiel Germylene, spirozyklische Germaniumverbindungen und molekulare Germanate zu erweitern und somit organisch-anorganische Komposite beziehungsweise Hybridmaterialien darzustellen. Dazu wurden neuartige Germaniumalkoxide auf der Basis von Benzylalkoholaten, Salicylalkoholaten sowie Benzylthiolaten synthetisiert, charakterisiert und auf ihre Fähigkeit Komposite beziehungsweise Hybridmaterialien über den Prozess der Zwillingspolymerisation zu erhalten studiert.
Ein zweites Ziel dieser Arbeit war es, Beziehungen zwischen der Struktur und der Reaktivität dieser molekularen Vorstufen sowie deren Einfluss auf die Eigenschaften der erhaltenen Polymerisationsprodukte zu identifizieren und systematisch zu untersuchen. Hierfür wurden zum einen verschiedene Substituenten, welche unterschiedliche elektronische sowie sterische Eigenschaften aufweisen, an den aromatischen Einheiten der molekularen Vorstufen eingeführt. Die Effekte der Substituenten auf den Prozess der Zwillingspolymerisation und auf die Eigenschaften der Komposite beziehungsweise Hybridmaterialien wurden für die Verbindungsklasse der Germanium(II)salicylalkoholate, der molekularen Germanate sowie der spiro-zyklischen Siliziumsalicylalkoholate untersucht. Spirozyklische Siliziumsalicylalkoholate, wie zum Beispiel 4H,4’H-2,2‘-Spirobi[benzo[d][1,3,2]dioxasilin], wurden im Rahmen dieser Arbeit mit einbezogen, da sie aufgrund ihres nahezu idealen Zwillingspolymerisationsprozesses geeignete Modelverbindungen für Reaktivitätsstudien darstellen. Zudem wurde der Einfluss der Substituenten auf die Charakteristika der aus den Kompositen beziehungsweise Hybridmaterialien erhaltenen Folgeprodukte (poröse Kohlenstoffmaterialien und oxydische Materialien) studiert. Des Weiteren wurde eine Serie von spirozyklischen Germaniumthiolaten, welche isostrukturell zu 4H,4’H-2,2‘-Spirobi[benzo[d][1,3,2]dioxasilin] sind, synthetisiert, um systematisch den Einfluss der Chalkogenide, Sauerstoff und Schwefel, in benzylständiger sowie phenylständiger Position auf deren Reaktionsvermögen im Polymerisationsprozess zu untersuchen.
Die experimentellen Ergebnisse zu den Struktur-Reaktivitätsbeziehungsstudien wurden, soweit es jeweils durchführbar war, mittels quantenchemische Rechnungen validiert und die daraus gezogenen Schlüsse in die Diskussion zur Interpretation der experimentellen Ergebnisse mit einbezogen.:Contents
List of Abbreviations S. 11
1 Introduction S.14
2 Germanium alkoxides and germanium thiolates S. 18
2.1 Preamble S. 18
2.2 Germanium alkoxides S. 18
2.2.1 Germanium(II) alkoxides S. 20
2.2.2 Germanium(IV) alkoxides S. 23
2.2.3 Alkoxidogermanates S. 29
2.3 Germanium thiolates S. 31
2.3.1 Germanium(II) thiolates S. 33
2.3.2 Germanium(IV) thiolates S. 34
2.3.3 Thiolatogermanates and cationic germanium thiolato transition metal complexes S. 36
2.4 Germanium alkoxido thiolates S. 38
2.5 Concluding remarks S. 40
3 Individual Contributions S. 43
4 Microporous Carbon and Mesoporous Silica by Use of Twin Polymerization: An integrated Experimental and Theoretical Approach on Precursor Reactivity S. 46
4.1 Abstract S. 46
4.2 Introduction S.46
4.3 Results and Discussion S. 48
4.3.1 Synthesis and Characterization S. 48
4.3.2 Thermally induced twin polymerization of monosubstituted Precursors (para position) S.49
4.3.2.1 Studies on reactivity according to thermally induced twin polymerization S. 50
4.3.2.2 Characterization of the hybrid materials as obtained by thermally induced twin polymerization S. 51
4.3.2.3 Thermally induced twin polymerization of di-substituted precursors (ortho and para position) S. 52
4.3.2.4 Conclusions drawn for the thermally induced twin polymerization S. 54
4.3.3 Proton-assisted twin polymerization S. 54
4.3.3.1 Studies on the reactivity according to proton-assisted twin polymerization S.55
4.3.3.2 Characterization of the hybrid materials as obtained by proton-assisted twin polymerization S.56
4.3.3.3 Computational studies on proton-assisted twin polymerization S. 58
4.3.3.4 Conclusions drawn for the process of proton-assisted twin polymerization S. 60
4.3.4 Characterization of the porous materials S.61
4.4 Conclusions S.64
4.5 Experimental Section S. 65
4.5.1 General S.65
4.5.2 General procedure for the synthesis of phenolic resin-silica hybrid materials by thermally induced twin polymerization in melt - exemplified for compound 1 S. 66
4.5.3 General procedure for the synthesis of phenolic resin-silica hybrid materials by proton-assisted twin polymerization in solution - exemplified for compound 1 S. 66
4.5.4 General procedure for the synthesis of microporous carbon - exemplified for hybrid material HM-1T S. 66
4.5.5 General procedure for the synthesis of mesoporous silica - exemplified for hybrid material HM-1T S. 67
4.5.6 Single-Crystal X-ray Diffraction Analyses S. 67
4.5.7 Computational Details S. 67
4.6 Acknowledgments S. 68
4.7 Keywords S.68
4.8 Supporting Information Chapter 4 S. 69
5 Synthesis of germanium dioxide nanoparticles in benzyl alcohols – a comparison S. 82
5.1 Abstract S. 82
5.2 Introduction S. 82
5.3 Results and Discussion S.83
5.4 Conclusions S. 87
5.5 Experimental Section S. 87
5.5.1 General S. 87
5.5.2 Syntheses S. 88
5.5.3 Synthesis of GeO2 in ortho-methoxy benzyl alcohol – sample A S. 88
5.5.4 Synthesis of GeO2 in benzyl alcohol under inert conditions – sample B S. 89
5.5.5 Synthesis of GeO2 in benzyl alcohol under ambient conditions – sample C S. 89
5.6 Acknowledgments S. 89
5.7 Keywords S.89
5.8 Supporting Information Chapter 5 S. 90
6 From a Germylene to an “Inorganic Adamantane”: [{Ge₄(μ-O)₂(μ-OH)₄}{W(CO)₅}₄]∙4THF S. 93
6.1 Abstract S.93
6.2 Introduction S. 93
6.3 Results and Discussion S. 94
6.4 Conclusions S. 98
6.5 Experimental Section S. 99
6.5.1 General S.99
6.5.2 Synthesis of germanium(II) (2-methoxyphenyl)methoxide (9) S. 99
6.5.3 Synthesis of [{Ge4(μ-O)2(μ-OH)4}{W(CO)5}4]·4THF (10·4THF) S. 100
6.5.4 Single-Crystal X-ray Diffraction Analyses S. 100
6.5.4.1 Crystal Data for (9)2 S. 101
6.5.4.2 Crystal Data for 10·4THF S. 101
6.5.5 Computational Details S. 101
6.6 Acknowledgments S. 101
6.7 Keywords S.101
6.8 Supporting Information Chapter 6 S. 102
7 Synthesis, characterization and Twin Polymerization of a novel dioxagermine S. 110
7.1 Abstract S. 110
7.2 Introduction S.110
7.3 Results and Discussion S. 111
7.3.1 Single-crystal X-ray diffraction analysis S. 111
7.3.2 IR spectroscopy S. 112
7.3.3 Mass spectrum S. 114
7.3.4 DSC/TGA analysis S. 116
7.3.5 Polymerization S. 117
7.4 Conclusions S. 118
7.5 Materials and Methods S.118
7.5.1 General S. 118
7.5.2 Synthesis of 5-bromo-2-hydroxybenzyl alcohol S. 119
7.5.3 Synthesis of di-tert-butyl-di-ethoxy germane S.119
7.5.4 Synthesis of 6-bromo-2,2-di-tert-butyl-4H-1,3,2-benzo[d]dioxagermine (11) S. 120
7.5.5 Polymerization of compound 11 S. 120
7.5.6 X-ray diffraction analysis of compound 11 S.120
7.5.6.1 Crystal data for compound 11 S.120
7.5.7 Computational Details S.121
7.6 Acknowledgments S.121
7.7 Keywords S. 121
7.8 Supporting Information Chapter 7 S. 122
8 Intramolecular C-O Insertion of a Germanium(II) Salicyl Alcoholate: A Combined Experimental and Theoretical Study S. 125
8.1 Abstract S.125
8.2 Introduction S. 125
8.3 Results and Discussion S.126
8.3.1 Syntheses and Characterization S. 126
8.3.2 1H NMR Spectroscopic Studies S.132
8.3.3 DFT-D Calculations S.134
8.4 Conclusions S. 137
8.5 Experimental Section S. 138
8.5.1 General S. 138
8.5.2 Synthesis of germanium(II) 2-tert-butyl-4-methyl-6-(oxidomethyl)phenolate (12) S. 139
8.5.3 Synthesis of 2,4,6,8-tetrakis(3-tert-butyl-5-methyl-2-oxidophenyl)methanide-1,3,5,7,2,4,6,8-tetraoxidogermocane (13) S. 139
8.5.3.1 Method a) S.139
8.5.3.2 Method b) S. 140
8.5.4 Synthesis of 7,8'-di-tert-butyl-5,6'-dimethyl-3H,4'H-spiro[benzo[d][1,2]oxager-mole-2,2'-benzo[d][1,3,2]dioxagermine] (14) S. 140
8.5.4.1 Method a) S. 140
8.5.4.2 Method b) S. 141
8.5.4.3 Method c) S. 141
8.5.5 Synthesis of the [4-(dimethylamino)pyridine][germanium(II)-2-tert-butyl-4-meth-yl-6-(oxidomethyl)phenolate] (15) S. 141
8.5.6 1H NMR spectroscopic study i) S. 142
8.5.7 1H NMR spectroscopic study ii) S. 142
8.5.7.1 Method a) S. 142
8.5.7.2 Method b) S. 142
8.5.8 1H NMR spectroscopic study iii) S. 142
8.5.8.1 Method a) S. 142
8.5.8.2 Method b) S. 142
8.5.9 1H NMR spectroscopic study iv) S. 143
8.5.10 1H NMR spectroscopic study of the mixture of complex 15 and 3-tert-butyl-2-hydroxy-5-methylbenzyl alcohol in CDCl3 S. 143
8.5.11 1H NMR spectroscopic study of complex 15 in CDCl3 at elevated temperature S. 143
8.5.12 Reaction of complex 15 at elevated temperature S. 143
8.5.13 Single-crystal X-ray diffraction analyses S. 143
8.5.14 Computational Details S.144
8.6 Acknowledgments S. 145
8.7 Keywords S.145
8.8 Supporting Information Chapter 8 S. 146
9 Porous Ge@C materials via twin polymerization of germanium(II) salicyl alcoholates for Li-ion batteries S. 159
9.1 Abstract S. 159
9.2 Introduction S. 159
9.3 Results and Discussion S. 160
9.3.1 Synthesis and Characterization of germylenes S. 160
9.3.2 Twin polymerization S. 164
9.3.2.1 Studies on the reactivity S. 164
9.3.2.2 Characterization of the hybrid materials obtained by thermally induced twin polymerization S. 166
9.3.3 Synthesis and characterization of porous materials S. 168
9.3.4 Electrochemical measurements S. 170
9.4 Conclusions S. 172
9.5 Experimental Section S.172
9.5.1 General S.172
9.5.2 Synthesis of germanium(II) 2-(oxidomethyl)phenolate (16) S. 174
9.5.3 Synthesis of germanium(II) 4-methyl-2-(oxidomethyl)phenolate (17) S. 174
9.5.4 Synthesis of germanium(II) 4-bromo-2-(oxidomethyl)phenolate (18) S. 175
9.5.5 General procedure for the synthesis of phenolic resin-germanium oxide hybrid materials by thermally induced twin polymerization in melt - exemplified for compound 16 S. 175
9.5.6 General procedure for the synthesis of porous Ge@C materials - exemplified for hybrid material HM-16 S.175
9.5.7 General procedure for the synthesis of germanium oxide - exemplified for hybrid material HM-16 S.176
9.5.8 Single-crystal X-ray diffraction analyses S. 176
9.5.9 Computational Details S. 177
9.5.10 Electrode fabrication, cell assembly and electrochemical measurements S. 178
9.6 Acknowledgments S.178
9.7 Keywords S. 178
9.8 Supporting Information Chapter 9 S.179
10 From molecular germanates to microporous Ge@C via twin polymerization S.199
10.1 Abstract S.199
10.2 Introduction 199
10.3 Results and Discussion S. 201
10.3.1 Syntheses and Characterization S. 201
10.3.2 Twin polymerization of germanate 19 S. 204
10.3.3 Synthesis and characterization of the porous materials S. 205
10.3.4 Electrochemical measurements S.206
10.4 Conclusions S. 207
10.5 Experimental Section S. 208
10.5.1 General S. 208
10.5.2 Synthesis of bis(dimethylammonium) tris[2-(oxidomethyl)phenolate(2-)]germa-nate (19) S. 209
10.5.3 Synthesis of bis(dimethylammonium) tris[4-methyl-2-(oxidomethyl)pheno-late(2-)]germanate (20) S. 210
10.5.4 Synthesis of bis(dimethylammonium) tris[4-bromo-2-(oxidomethyl)pheno-late(2-)]germanate (21) S.210
10.5.5 Synthesis of dimethylammonium bis[2-tert-butyl-4-methyl-6-(oxidomethyl)phe-nolate(2-)][2-tert-butyl-4-methyl-6-(hydroxymethyl)phenolate(1-)]germanate (22) S. 211
10.5.6 Synthesis of phenolic resin-germanium dioxide hybrid materials by thermally induced twin polymerization in melt - HM-19 S. 211
10.5.7 Synthesis of porous Ge@C material C-19 starting from HM-19 S. 212
10.5.8 Synthesis of germanium dioxide material Ox-19 - starting from HM-19 S.212
10.5.9 Single-crystal X-ray diffraction analyses S. 212
10.5.10 Electrode fabrication, cell assembly and electrochemical measurements S.213
10.6 Acknowledgments S. 214
10.7 Keywords S. 214
10.8 Supporting Information Chapter 10 S.215
11 Chiral Spirocyclic Germanium Thiolates – An Evaluation of Their Suitability for Twin Polymerization based on A Combined Experimental and Theoretical Study S.226
11.1 Abstract S.226
11.2 Introduction S. 226
11.3 Results and Discussion S.227
11.3.1 Syntheses and Characterization S. 227
11.3.2 Studies on twin polymerization S.229
11.3.3 Computational studies on proton-assisted twin polymerization S. 232
11.4 Conclusions S. 235
11.5 Acknowledgments S. 236
11.6 Keywords S.236
11.7 Supporting Information Chapter 11 S.237
12 Concluding remarks S. 257
12.1 Discussion S.257
12.1.1 Twin polymerization of germanium-containing precursors S. 257
12.1.2 Reactivity studies of precursors towards their twin polymerization S.260
12.2 Summary and Outlook S. 264
Selbständigkeitserklärung S.266
Curriculum Vitae S.267
Publications S. 268
List of Publications in Peer-Reviewed Journals S. 268
List of Conference Contributions S.269
Research proposals, additional conference and summer school participations S. 270
Acknowledgments S. 271
References S. 272
|
122 |
Characterization of heterogeneous diffusion in confined soft matterTäuber, Daniela 26 October 2011 (has links) (PDF)
A new method, probability distribution of diffusivities (time scaled square displacements between succeeding video frames), was developed to analyze single molecule tracking (SMT) experiments. This method was then applied to SMT experiments on ultrathin liquid tetrakis(2-ethylhexoxy)silane (TEHOS) films on Si wafer with 100 nm thermally grown oxide, and on thin semectic liquid crystal films. Spatial maps of diffusivities from SMT experiments on 220 nm thick semectic liquid crystal films reveal structure related dynamics. The SMT experiments on ultrathin TEHOS films were complemented by fluorescence correlation spectroscopy (FCS). The observed strongly heterogeneous single molecule dynamics within those films can be explained by a three-layer model consisting of (i) dye molecules adsorbed to the substrate, (ii) slowly diffusing molecules in the laterally heterogeneous near-surface region of 1 - 2 molecular diameters, and (iii) freely diffusing dye molecules in the upper region of the film. FCS and SMT experiments reveal a strong influence of substrate heterogeneity on SM dynamics. Thereby chemisorption to substrate surface silanols plays an important role. Vertical mean first passage times (mfpt) in those films are below 1 µs. This appears as fast component in FCS autocorrelation curves, which further contain a contribution from lateral diffusion and from adsorption events. Therefore, the FCS curves are approximated by a tri-component function, which contains an exponential term related to the mfpt, the correlation function for translational diffusion and a stretched exponential term for the broad distribution of adsorption events. Lateral diffusion coefficients obtained by FCS on 10 nm thick TEHOS films, thereby, are effective diffusion coefficients from dye transients in the focal area. They strongly depend on the substrate heterogeneity. Variation of the frame times for the acquisition of SMT experiments in steps of 20 ms from 20 ms to 200 ms revealed a strong dependence of the corresponding probability distributions of diffusivities on time, in particular in the range between 20 ms and 100 ms. This points to average dwell times of the dye molecules in at least one type of the heterogeneous regions (e.g. on and above silanol clusters) in the range of few tens of milliseconds.
Furthermore, time series of SM spectra from Nile Red in 25 nm thick poly-n-alkyl-methacrylate (PnAMA) films were studied. In analogy to translational diffusion, spectral diffusion (shifts in energetic positions of SM spectra) can be studied by probability distributions of spectral diffusivities, i.e. time scaled square energetic displacements. Simulations were run and analyzed to study contributions from noise and fitting uncertainty to spectral diffusion. Furthermore the effect of spectral jumps during acquisition of a SM spectrum was investigated. Probability distributions of spectral diffusivites of Nile Red probing vitreous PnAMA films reveal a two-level system. In contrast, such probability distributions obtained from Nile Red within a 25 nm thick poly-n-butylmethacrylate film around glass transition and in the melt state, display larger spectral jumps. Moreover, for longer alkyl side chains a solvent shift to higher energies is observed, which supports the idea of nanophase separation within those polymers.
|
123 |
Characterization of heterogeneous diffusion in confined soft matterTäuber, Daniela 20 October 2011 (has links)
A new method, probability distribution of diffusivities (time scaled square displacements between succeeding video frames), was developed to analyze single molecule tracking (SMT) experiments. This method was then applied to SMT experiments on ultrathin liquid tetrakis(2-ethylhexoxy)silane (TEHOS) films on Si wafer with 100 nm thermally grown oxide, and on thin semectic liquid crystal films. Spatial maps of diffusivities from SMT experiments on 220 nm thick semectic liquid crystal films reveal structure related dynamics. The SMT experiments on ultrathin TEHOS films were complemented by fluorescence correlation spectroscopy (FCS). The observed strongly heterogeneous single molecule dynamics within those films can be explained by a three-layer model consisting of (i) dye molecules adsorbed to the substrate, (ii) slowly diffusing molecules in the laterally heterogeneous near-surface region of 1 - 2 molecular diameters, and (iii) freely diffusing dye molecules in the upper region of the film. FCS and SMT experiments reveal a strong influence of substrate heterogeneity on SM dynamics. Thereby chemisorption to substrate surface silanols plays an important role. Vertical mean first passage times (mfpt) in those films are below 1 µs. This appears as fast component in FCS autocorrelation curves, which further contain a contribution from lateral diffusion and from adsorption events. Therefore, the FCS curves are approximated by a tri-component function, which contains an exponential term related to the mfpt, the correlation function for translational diffusion and a stretched exponential term for the broad distribution of adsorption events. Lateral diffusion coefficients obtained by FCS on 10 nm thick TEHOS films, thereby, are effective diffusion coefficients from dye transients in the focal area. They strongly depend on the substrate heterogeneity. Variation of the frame times for the acquisition of SMT experiments in steps of 20 ms from 20 ms to 200 ms revealed a strong dependence of the corresponding probability distributions of diffusivities on time, in particular in the range between 20 ms and 100 ms. This points to average dwell times of the dye molecules in at least one type of the heterogeneous regions (e.g. on and above silanol clusters) in the range of few tens of milliseconds.
Furthermore, time series of SM spectra from Nile Red in 25 nm thick poly-n-alkyl-methacrylate (PnAMA) films were studied. In analogy to translational diffusion, spectral diffusion (shifts in energetic positions of SM spectra) can be studied by probability distributions of spectral diffusivities, i.e. time scaled square energetic displacements. Simulations were run and analyzed to study contributions from noise and fitting uncertainty to spectral diffusion. Furthermore the effect of spectral jumps during acquisition of a SM spectrum was investigated. Probability distributions of spectral diffusivites of Nile Red probing vitreous PnAMA films reveal a two-level system. In contrast, such probability distributions obtained from Nile Red within a 25 nm thick poly-n-butylmethacrylate film around glass transition and in the melt state, display larger spectral jumps. Moreover, for longer alkyl side chains a solvent shift to higher energies is observed, which supports the idea of nanophase separation within those polymers.
|
Page generated in 0.1147 seconds