• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Nanoscale Confinement on the Structure and Dynamics of Glass-forming Systems

Kipnusu, Wycliffe Kiprop 15 October 2015 (has links) (PDF)
Structure and dynamics of nanoconfined glass-forming oligomers and diblock coplymers (BPCs) are investigated by a combination of infrared transition moment orientational analysis (IR-TMOA), positron annihilation lifetime spectroscopy (PALS), grazing incidence small angle X-ray scattering (GISAXS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and broadband dielectric spectroscopy (BDS). The oligomers probed are the van der Waals type, tris(2-ethyhexyl)phosphate (TEHP) and the self-associating molecules of 2-ethyl-1-hexanol (2E1H). Symmetric and asymmetric poly(styrene-b-1,4-isoprene) P(S-b-I) are studied for the case of BCPs. The samples are confined either in one-dimensional (1D) in form of thin films or in 2D (nanopores) geometrical constraints. The molecular order of TEHP in nanopores as studied by IR-TMOA shows that about 7% of the molecules are preferentially oriented perpendicular to the long axis of the pores due to their interaction with the pore walls. PALS results reveal that 2E1H confined in nanopores exhibit larger free volume with respect to the bulk. In thin films (1D), P(S-b-I) having volume fraction of isoprene blocks f(PI)= 0.55 exhibits randomly oriented lamellae and their thicknesses are directly proportional to the film thickness d(film). For f(PI) = 0.73, perpendicular cylinders with respect to the substrate are observed for d(film)>50 nm but they lie along the substrate plane when d(film) < 50 nm. In AAO pores (2D) with average pore diameter d(pore) of 150 nm, straight nanorods are formed which change to helical structures in 18 nm pores. Molecular dynamics of 2E1H and TEHP constrained in nanopores (2D), is influenced by the interplay between confinement and surface effects. Confinement effects show up as an increase in the structural relaxation rate with decreasing pore sizes at the vicinity of the glass transition temperature. This is attributed to the reduced packing density of the molecules in pores as quantified by PALS results for 2E1H. Whereas the orientation and morphologies of the domains in P(S-b-I) and the chain dynamics of isoprene chains are influenced by the finite--size and dimensionality of confinement, the segmental motion, related to the dynamic glass transition (DGT) of both styrene and isoprene blocks remains unaffected-in its relaxation time-within experimental accuracy. Effects of nanoscale confinement on the molecular dynamics therefore depend on a number of factors: the type of molecules (polymers, low molecular liquids), interfacial interactions and the dimensionality of the constraining geometries.
2

Effects of Nanoscale Confinement on the Structure and Dynamics of Glass-forming Systems

Kipnusu, Wycliffe Kiprop 17 September 2015 (has links)
Structure and dynamics of nanoconfined glass-forming oligomers and diblock coplymers (BPCs) are investigated by a combination of infrared transition moment orientational analysis (IR-TMOA), positron annihilation lifetime spectroscopy (PALS), grazing incidence small angle X-ray scattering (GISAXS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and broadband dielectric spectroscopy (BDS). The oligomers probed are the van der Waals type, tris(2-ethyhexyl)phosphate (TEHP) and the self-associating molecules of 2-ethyl-1-hexanol (2E1H). Symmetric and asymmetric poly(styrene-b-1,4-isoprene) P(S-b-I) are studied for the case of BCPs. The samples are confined either in one-dimensional (1D) in form of thin films or in 2D (nanopores) geometrical constraints. The molecular order of TEHP in nanopores as studied by IR-TMOA shows that about 7% of the molecules are preferentially oriented perpendicular to the long axis of the pores due to their interaction with the pore walls. PALS results reveal that 2E1H confined in nanopores exhibit larger free volume with respect to the bulk. In thin films (1D), P(S-b-I) having volume fraction of isoprene blocks f(PI)= 0.55 exhibits randomly oriented lamellae and their thicknesses are directly proportional to the film thickness d(film). For f(PI) = 0.73, perpendicular cylinders with respect to the substrate are observed for d(film)>50 nm but they lie along the substrate plane when d(film) < 50 nm. In AAO pores (2D) with average pore diameter d(pore) of 150 nm, straight nanorods are formed which change to helical structures in 18 nm pores. Molecular dynamics of 2E1H and TEHP constrained in nanopores (2D), is influenced by the interplay between confinement and surface effects. Confinement effects show up as an increase in the structural relaxation rate with decreasing pore sizes at the vicinity of the glass transition temperature. This is attributed to the reduced packing density of the molecules in pores as quantified by PALS results for 2E1H. Whereas the orientation and morphologies of the domains in P(S-b-I) and the chain dynamics of isoprene chains are influenced by the finite--size and dimensionality of confinement, the segmental motion, related to the dynamic glass transition (DGT) of both styrene and isoprene blocks remains unaffected-in its relaxation time-within experimental accuracy. Effects of nanoscale confinement on the molecular dynamics therefore depend on a number of factors: the type of molecules (polymers, low molecular liquids), interfacial interactions and the dimensionality of the constraining geometries.
3

Breitbandige dielektrische Spektroskopie zur Untersuchung der molekularen Dynamik von Nanometer-dünnen Polymerschichten / Broadband dielectric spectroscopy to investigate the molecular dynamics of nanometer-thin polymer layers

Treß, Martin 07 January 2015 (has links) (PDF)
Mit dieser Arbeit ist weltweit zum ersten Mal die molekulare Dynamik von vereinzelten,d.h. einander nicht berührenden Polymerketten experimentell bestimmt worden. Die Grundlagen dafür sind einerseits die breitbandige dielektrische Spektroskopie mit ihrer außerordentlich hohen experimentellen Empfindlichkeit und andererseits die Weiterentwicklung einer speziellen Probenanordnung, bei der hochleitfähige Silizium-Elektroden durch elektrisch isolierende Siliziumdioxid-Nanostrukturen in einem vordefinierten Abstand gehalten werden und so den Probenkondensator bilden. Im Rahmen dieser Arbeit wurde die Höhe der Nanostrukturen (und damit des Elektrodenabstands) auf nur 35 nm reduziert. Damit gelang der Nachweis, dass selbst vereinzelte kondensierte Polymer-Knäuel - im Rahmen der Messgenauigkeit - dieselbe Segmentdynamik (bzw. denselben dynamischen Glasübergang), gemessen in ihrer mittleren Relaxationsrate, wie die makroskopische Schmelze („bulk“) aufweisen. Nur ein kleiner Anteil der Segmente zeigt eine langsamere Dynamik, was auf attraktive Wechselwirkungen mit dem Substrat zurückzuführen ist, wie komplementäre Untersuchungen mittels Infrarot-Spektroskopie zeigen. Zudem bieten diese Experimente die Möglichkeit, nach der dielektrischen Messung die mit Nanostrukturen versehene obere Elektrode zu entfernen und die Verteilung der vereinzelten Polymerketten, deren Oberflächenprofile und Volumen mit dem Rasterkraftmikroskop zu bestimmen. Erst damit gelingt der Nachweis, dass die Polymer-Knäuel im Mittel aus einer einzelnen Kette bestehen. Die Kombination dieser drei unabhängigen Messmethoden liefert ein schlüssiges und detailliertes Bild, gekennzeichnet dadurch, dass attraktive Oberflächenwechselwirkungen die Glasdynamik nur über ca. 0,5nm direkt beeinflussen. In einem zweiten Teil trägt die Arbeit mit der Untersuchung dünner Polymerschichten im Nanometer-Bereich zu einer international geführten, kontroversen Diskussion um die Frage, ob sich im Falle solcher räumlichen Begrenzungen der dynamische und kalorimetrische Glasübergang ändern, bei. Dabei zeigt mit den präsentierten dielektrischen und ellipsometrischen Messungen eine Kombination aus einer Methode, die im Gleichgewichtszustand misst und einer, die den Übergang in den Nichtgleichgewichtszustand bestimmt, dass sich sowohl Polystyrol-Schichten verschiedener Molekulargewichte bis zu einer Dicke von nur 5 nm als auch Polymethylmethacrylat-Schichten auf unterschiedlichen (hydrophilen und hydrophoben) Substraten bis zu einer Dicke von 10 nm weder in ihrem dynamischen noch ihrem kalorimetrischen Glasübergang von der makroskopischen Schmelze unterscheiden.
4

Breitbandige dielektrische Spektroskopie zur Untersuchung der molekularen Dynamik von Nanometer-dünnen Polymerschichten

Treß, Martin 21 November 2014 (has links)
Mit dieser Arbeit ist weltweit zum ersten Mal die molekulare Dynamik von vereinzelten,d.h. einander nicht berührenden Polymerketten experimentell bestimmt worden. Die Grundlagen dafür sind einerseits die breitbandige dielektrische Spektroskopie mit ihrer außerordentlich hohen experimentellen Empfindlichkeit und andererseits die Weiterentwicklung einer speziellen Probenanordnung, bei der hochleitfähige Silizium-Elektroden durch elektrisch isolierende Siliziumdioxid-Nanostrukturen in einem vordefinierten Abstand gehalten werden und so den Probenkondensator bilden. Im Rahmen dieser Arbeit wurde die Höhe der Nanostrukturen (und damit des Elektrodenabstands) auf nur 35 nm reduziert. Damit gelang der Nachweis, dass selbst vereinzelte kondensierte Polymer-Knäuel - im Rahmen der Messgenauigkeit - dieselbe Segmentdynamik (bzw. denselben dynamischen Glasübergang), gemessen in ihrer mittleren Relaxationsrate, wie die makroskopische Schmelze („bulk“) aufweisen. Nur ein kleiner Anteil der Segmente zeigt eine langsamere Dynamik, was auf attraktive Wechselwirkungen mit dem Substrat zurückzuführen ist, wie komplementäre Untersuchungen mittels Infrarot-Spektroskopie zeigen. Zudem bieten diese Experimente die Möglichkeit, nach der dielektrischen Messung die mit Nanostrukturen versehene obere Elektrode zu entfernen und die Verteilung der vereinzelten Polymerketten, deren Oberflächenprofile und Volumen mit dem Rasterkraftmikroskop zu bestimmen. Erst damit gelingt der Nachweis, dass die Polymer-Knäuel im Mittel aus einer einzelnen Kette bestehen. Die Kombination dieser drei unabhängigen Messmethoden liefert ein schlüssiges und detailliertes Bild, gekennzeichnet dadurch, dass attraktive Oberflächenwechselwirkungen die Glasdynamik nur über ca. 0,5nm direkt beeinflussen. In einem zweiten Teil trägt die Arbeit mit der Untersuchung dünner Polymerschichten im Nanometer-Bereich zu einer international geführten, kontroversen Diskussion um die Frage, ob sich im Falle solcher räumlichen Begrenzungen der dynamische und kalorimetrische Glasübergang ändern, bei. Dabei zeigt mit den präsentierten dielektrischen und ellipsometrischen Messungen eine Kombination aus einer Methode, die im Gleichgewichtszustand misst und einer, die den Übergang in den Nichtgleichgewichtszustand bestimmt, dass sich sowohl Polystyrol-Schichten verschiedener Molekulargewichte bis zu einer Dicke von nur 5 nm als auch Polymethylmethacrylat-Schichten auf unterschiedlichen (hydrophilen und hydrophoben) Substraten bis zu einer Dicke von 10 nm weder in ihrem dynamischen noch ihrem kalorimetrischen Glasübergang von der makroskopischen Schmelze unterscheiden.:Inhaltsverzeichnis I Abbildungsverzeichnis III Tabellenverzeichnis V 1 Einleitung 1 2 Theoretische Grundlagen 5 2.1 Glasübergang und Glasdynamik . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Kristallisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Der kalorimetrische Glasübergang . . . . . . . . . . . . . . . . . . . 7 2.1.3 Der dynamische Glasübergang . . . . . . . . . . . . . . . . . . . . . 7 2.1.4 Theoretische Modelle . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Polymere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Molekulare Struktur . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Molekulare Dynamik . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 „Confinement effects“ - der Einfluss räumlicher Begrenzung . . . . . 19 2.3 Wechselwirkung von elektromagnetischen Feldern mit Materie . . . . . . . . 22 2.3.1 Polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Elektrostatik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.3 Dielektrische Relaxation und Retardation . . . . . . . . . . . . . . . 26 3 Material und Methoden 39 3.1 Experimentelle Methoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.1 Dielektrische Spektroskopie . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.2 Rasterkraftmikroskopie . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.3 Ergänzende Methoden . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 Datenauswertung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.1 Analyse der dielektrischen Messungen . . . . . . . . . . . . . . . . . 52 3.2.2 Analyse der Rasterkraftmikroskopaufnahmen . . . . . . . . . . . . . 61 3.2.3 Verfahren zur Auswertung der ergänzenden Methoden . . . . . . . . 74 3.3 Probenmaterial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4 Probenpräparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.4.1 Präparation dünner Polymerfilme und vereinzelter Polymerknäuel . . 84 3.4.2 Probenkondensatoren mit nanostrukturierten Elektroden . . . . . . . 90 3.4.3 Aufdampfen von Elektroden . . . . . . . . . . . . . . . . . . . . . . . 95 3.4.4 Tempern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.4.5 Besonderheiten der Präparation für die ergänzenden Methoden . . . 96 3.5 Reproduzierbarkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.5.1 Unerwünschte Veränderungen der Probe und Gegenmaßnahmen . . 98 3.5.2 Prüfung der Probenstabilität . . . . . . . . . . . . . . . . . . . . . . . 101 3.5.3 Partikelkontamination . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4 Ergebnisse und Diskussion 105 4.1 Modellierung der dielektrischen Spektren . . . . . . . . . . . . . . . . . . . 105 4.1.1 Probenaufbau und Ersatzschaltbilder . . . . . . . . . . . . . . . . . . 106 4.1.2 Vergleich modellierter und gemessener Spektren . . . . . . . . . . . 111 4.1.3 Modell eines Polymer-Knäuels im Plattenkondensator . . . . . . . . . 119 4.1.4 Schlussfolgerungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.2 Dünne Polymerschichten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.2.1 Polystyrol-Schichten verschiedener Molekulargewichte . . . . . . . . 128 4.2.2 Polymethylmethacrylat-Schichten auf unterschiedlichen Substraten . 135 4.2.3 Literaturdiskussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 4.2.4 Die präsentierten Ergebnisse im Kontext der Literatur . . . . . . . . . 155 4.3 Vereinzelte Polymer-Knäuel . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4.3.1 Charakterisierung der Oberfläche . . . . . . . . . . . . . . . . . . . . 158 4.3.2 Molekulare Dynamik . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 4.3.3 Wechselwirkungen mit der Oberfläche . . . . . . . . . . . . . . . . . 170 4.3.4 Interpretation - das molekulare Bild . . . . . . . . . . . . . . . . . . 174 5 Zusammenfassung 177 A Übersicht der Messungen und Experimentatoren 181 Literaturverzeichnis 182 Publikationsliste 205 Danksagung 209 Lebenslauf 211 Selbstständigkeitserklärung 213
5

Characterization of heterogeneous diffusion in confined soft matter

Täuber, Daniela 26 October 2011 (has links) (PDF)
A new method, probability distribution of diffusivities (time scaled square displacements between succeeding video frames), was developed to analyze single molecule tracking (SMT) experiments. This method was then applied to SMT experiments on ultrathin liquid tetrakis(2-ethylhexoxy)silane (TEHOS) films on Si wafer with 100 nm thermally grown oxide, and on thin semectic liquid crystal films. Spatial maps of diffusivities from SMT experiments on 220 nm thick semectic liquid crystal films reveal structure related dynamics. The SMT experiments on ultrathin TEHOS films were complemented by fluorescence correlation spectroscopy (FCS). The observed strongly heterogeneous single molecule dynamics within those films can be explained by a three-layer model consisting of (i) dye molecules adsorbed to the substrate, (ii) slowly diffusing molecules in the laterally heterogeneous near-surface region of 1 - 2 molecular diameters, and (iii) freely diffusing dye molecules in the upper region of the film. FCS and SMT experiments reveal a strong influence of substrate heterogeneity on SM dynamics. Thereby chemisorption to substrate surface silanols plays an important role. Vertical mean first passage times (mfpt) in those films are below 1 µs. This appears as fast component in FCS autocorrelation curves, which further contain a contribution from lateral diffusion and from adsorption events. Therefore, the FCS curves are approximated by a tri-component function, which contains an exponential term related to the mfpt, the correlation function for translational diffusion and a stretched exponential term for the broad distribution of adsorption events. Lateral diffusion coefficients obtained by FCS on 10 nm thick TEHOS films, thereby, are effective diffusion coefficients from dye transients in the focal area. They strongly depend on the substrate heterogeneity. Variation of the frame times for the acquisition of SMT experiments in steps of 20 ms from 20 ms to 200 ms revealed a strong dependence of the corresponding probability distributions of diffusivities on time, in particular in the range between 20 ms and 100 ms. This points to average dwell times of the dye molecules in at least one type of the heterogeneous regions (e.g. on and above silanol clusters) in the range of few tens of milliseconds. Furthermore, time series of SM spectra from Nile Red in 25 nm thick poly-n-alkyl-methacrylate (PnAMA) films were studied. In analogy to translational diffusion, spectral diffusion (shifts in energetic positions of SM spectra) can be studied by probability distributions of spectral diffusivities, i.e. time scaled square energetic displacements. Simulations were run and analyzed to study contributions from noise and fitting uncertainty to spectral diffusion. Furthermore the effect of spectral jumps during acquisition of a SM spectrum was investigated. Probability distributions of spectral diffusivites of Nile Red probing vitreous PnAMA films reveal a two-level system. In contrast, such probability distributions obtained from Nile Red within a 25 nm thick poly-n-butylmethacrylate film around glass transition and in the melt state, display larger spectral jumps. Moreover, for longer alkyl side chains a solvent shift to higher energies is observed, which supports the idea of nanophase separation within those polymers.
6

Characterization of heterogeneous diffusion in confined soft matter

Täuber, Daniela 20 October 2011 (has links)
A new method, probability distribution of diffusivities (time scaled square displacements between succeeding video frames), was developed to analyze single molecule tracking (SMT) experiments. This method was then applied to SMT experiments on ultrathin liquid tetrakis(2-ethylhexoxy)silane (TEHOS) films on Si wafer with 100 nm thermally grown oxide, and on thin semectic liquid crystal films. Spatial maps of diffusivities from SMT experiments on 220 nm thick semectic liquid crystal films reveal structure related dynamics. The SMT experiments on ultrathin TEHOS films were complemented by fluorescence correlation spectroscopy (FCS). The observed strongly heterogeneous single molecule dynamics within those films can be explained by a three-layer model consisting of (i) dye molecules adsorbed to the substrate, (ii) slowly diffusing molecules in the laterally heterogeneous near-surface region of 1 - 2 molecular diameters, and (iii) freely diffusing dye molecules in the upper region of the film. FCS and SMT experiments reveal a strong influence of substrate heterogeneity on SM dynamics. Thereby chemisorption to substrate surface silanols plays an important role. Vertical mean first passage times (mfpt) in those films are below 1 µs. This appears as fast component in FCS autocorrelation curves, which further contain a contribution from lateral diffusion and from adsorption events. Therefore, the FCS curves are approximated by a tri-component function, which contains an exponential term related to the mfpt, the correlation function for translational diffusion and a stretched exponential term for the broad distribution of adsorption events. Lateral diffusion coefficients obtained by FCS on 10 nm thick TEHOS films, thereby, are effective diffusion coefficients from dye transients in the focal area. They strongly depend on the substrate heterogeneity. Variation of the frame times for the acquisition of SMT experiments in steps of 20 ms from 20 ms to 200 ms revealed a strong dependence of the corresponding probability distributions of diffusivities on time, in particular in the range between 20 ms and 100 ms. This points to average dwell times of the dye molecules in at least one type of the heterogeneous regions (e.g. on and above silanol clusters) in the range of few tens of milliseconds. Furthermore, time series of SM spectra from Nile Red in 25 nm thick poly-n-alkyl-methacrylate (PnAMA) films were studied. In analogy to translational diffusion, spectral diffusion (shifts in energetic positions of SM spectra) can be studied by probability distributions of spectral diffusivities, i.e. time scaled square energetic displacements. Simulations were run and analyzed to study contributions from noise and fitting uncertainty to spectral diffusion. Furthermore the effect of spectral jumps during acquisition of a SM spectrum was investigated. Probability distributions of spectral diffusivites of Nile Red probing vitreous PnAMA films reveal a two-level system. In contrast, such probability distributions obtained from Nile Red within a 25 nm thick poly-n-butylmethacrylate film around glass transition and in the melt state, display larger spectral jumps. Moreover, for longer alkyl side chains a solvent shift to higher energies is observed, which supports the idea of nanophase separation within those polymers.

Page generated in 0.0716 seconds