• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 15
  • 7
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 162
  • 29
  • 23
  • 16
  • 14
  • 13
  • 13
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Naphthalene Hydrogenation with Water Gas Shift in Model Oil/Water Emulsion Slurry over Molybdenum Sulfide

Choy, Christopher January 2009 (has links)
Catalytic naphthalene hydrogenation to tetralin in water/hydrocarbon emulsions with simultaneous water gas shift as the hydrogen source was performed in a 300 ml batch autoclave as a model for aromatic hydrogenation in water/bitumen emulsions. The catalyst utilized was an unsupported and dispersed type based on molybdenum sulfide (MoS2). Distinguishing the fate of hydrogen from water as opposed to molecular hydrogen in hydrogenation and water gas shift was accomplished by utilizing deuterium oxide (D2O) with NMR spectroscopy. The use of D2O allowed determination of isotope effects when compared with H2O. Diffuse Reflectance Infrared Fourier Transform Spectroscopy was performed to observe CO adsorption on the MoS2 sulfide surface. Ruthenium was tested as a potential candidate to enhance the activity of the Mo catalyst. Iron, nickel and vanadium were utilized in combination with molybdenum to test promotional/inhibitive activity during naphthalene hydrogenation and water gas shift since Ni and V are found in significant quantities in real bitumen feed. Finally, a multifactorial experiment was performed to test the hydrogenation and water gas shift activity of a binary VNiMo-sulfide catalyst towards H2S partial pressure, temperature and H2 versus CO atmospheres. Deuterium from D2O was incorporated into both saturated and aromatic hydrogen positions in tetralin products. Calculation of a Hydrogenation Index and Exchange Index indicated the extent of H-exchange is greater than hydrogenation. Exchange between D2O and organic products was enhanced with the MoS2 catalyst under H2 or CO compared to N2. A kinetically measured isotope effect of 1.58 was in agreement with a quasi-equilibrium thermodynamic isotope effect for O-H dissociations measured in the literature. A true kinetic isotope effect may be masked by transient surface concentrations occurring under batch conditions. Two strong vibrational bands associated with adsorbed CO were observed over MoS2 above 160 °C. Activation of the MoS2 surface with CO produces COS, suggesting an analgous mechanism to the production of H2S during reduction in H2. In the presence of H2S, Ru displayed low catalytic activity for both water gas shift and naphthalene hydrogenation, attributed to incomplete sulfidation to active RuS2. FeMo and VMo exhibited lower hydrogenation activity than Mo, but the water gas shift activity of VMo was high. A ternary VNiMo displayed lower hydrogenation activity than NiMo and Mo but was higher than VMo, implying Ni could offset the inhibition caused by V. Recycle of V and Ni rich asphaltene residues in catalytic slurry upgrading may therefore be feasible. An analysis of the effect of H2S pressure, temperature and type of reduction gas (CO vs. H¬2) concluded that temperature had the greatest positive effect on rate, followed by a small interaction effect of temperature/gas type and PH2S/gas type. The proximity to equilibrium conversions in WGS limited the analysis, while equilibrium limited the conversion of naphthalene at 380 °C in the batch reactor.
92

p-Dichlorobenzene and naphthalene : emissions and related primary and secondary exposures in residential buildings

Guerrero, Priscilla Annette 25 October 2013 (has links)
p-Dichlorobenzene (p-DCB) and naphthalene are compounds classified as Group C carcinogens according to the USEPA. Sources of p-DCB and naphthalene include moth repellents and deodorizers typically used in closets, garment bags, and toilet bowls found in pure form. In this study, laboratory, closet, and garment bag experiments were used to determine emission rates of p-DCB and naphthalene from consumer products (closet air freshener, toilet bowl deodorizer, and moth repellent). Emission rates varied considerably between products that contain p-DCB, primarily due to product packaging, and were generally suppressed when the product was used in a closed closet or garments bag, relative to products placed in well-ventilated chambers. Experimental mass emission rates were used in conjunction with a well-mixed reactor model to predict indoor p-DCB and naphthalene concentrations for a range of reasonable residential scenarios. Results suggest that exposures under worst-case scenarios could lead to excess lifetime cancer risks of greater than 20,000 in a million (2%) for those who use consumer products that are pure p-DCB, a risk that dwarfs any reported environmental cancer risks over large segments of the US population. Since such products are typically used where clothing is kept, significant chemical adsorption onto clothing is possible following sublimation from the solid product. Chamber experiments were used to determine the amount of p-DCB and naphthalene mass that adsorbs onto selected clothing materials made of cotton, polyester, or wool. Cloth specimens were kept inside a chamber through which an air stream containing p-DCB or naphthalene was passed for one month. After this time, p-DCB or naphthalene were chemically extracted from the cloth specimens. Polyester was determined to be the most adsorbent material, while cotton was the least adsorbent for each chemical. Equilibrium partition coefficients of 0.01 m³/g for p-DCB and 0.02 m³/g for naphthalene were determined experimentally for wool. Desorption rates were determined in both laboratory chambers and a closet in a test house. Results suggest prolonged persistence of p-DCB and naphthalene on polyester and wool, e.g., half-lives of 12 to 20 days after a moth repellent is removed from the clothes storage environment. An exposure scenario was also carried out to compare the inhalation and dermal exposure risks associated with contaminated clothing. / text
93

Quantitative measurements of ablation-products transport in supersonic turbulent flows using planar laser-induced fluorescence

Combs, Christopher Stanley 17 September 2015 (has links)
A recently-developed experimental technique based on the sublimation of naphthalene, which enables imaging of the dispersion of a passive scalar using planar laser-induced fluorescence (PLIF), is applied to a Mach 5 turbulent boundary layer and a NASA Orion capsule flowfield. To enable the quantification of naphthalene PLIF images, quantitative fluorescence and quenching measurements were made in a temperature- and pressure-regulated test cell. The test cell measurements were of the naphthalene fluorescence lifetime and integrated fluorescence signal over the temperature range of 100 K to 525 K and pressure range of 1 kPa to 40 kPa in air. These data enabled the calculation of naphthalene fluorescence yield and absorption cross section over the range of temperatures and pressures tested, which were then fit to simple functional forms for use in the calibration of the PLIF images. Quantitative naphthalene PLIF images in the Mach 5 boundary layer revealed large-scale naphthalene vapor structures that were regularly ejected out to wall distances of approximately y/δ = 0.6 for a field of view that spanned 3δ to 5δ downstream of the trailing edge of the naphthalene insert. The magnitude of the calculated naphthalene mole fraction in these structures at y/δ = 0.2 ranged from approximately 1-6% of the saturation mole fraction at the wind tunnel recovery temperature and static pressure. An uncertainty analysis showed that the uncertainty in the inferred naphthalene mole fraction measurements was ± 20%. Mean mole fraction profiles collected at different streamwise locations were normalized by the mole fraction measured at the wall and a characteristic height of the scalar boundary layer, causing the profiles to collapse into one “universal” mole fraction profile. Two-dimensional fields of naphthalene mole fraction were also obtained simultaneously with velocity by using particle image velocimetry (PIV) and PLIF. The images show large-scale naphthalene vapor structures that coincide with regions of relatively low streamwise velocity. The covariance of naphthalene mole fraction with velocity indicates that an ejection mechanism is transporting low-momentum, high-scalar-concentration fluid away from the wall, resulting in the protrusions of naphthalene vapor evident in the instantaneous PLIF images. Lastly, naphthalene PLIF was used to visualize the dispersion of gas-phase ablation products on a scaled Orion capsule model at four different angles of attack at Mach 5. High concentrations of scalar were imaged in the capsule recirculation region. Additionally, intermittent turbulent structures were visualized on the heat shield surface, particularly for the 12° and 52° AoA cases.
94

Technique for imaging ablation-products transported in high-speed boundary layers by using naphthalene planar laser-induced fluorescence

Lochman, Bryan John 20 December 2010 (has links)
A new technique is developed that uses planar laser-induced fluorescence (PLIF) imaging of sublimated naphthalene to image the transport of ablation products in a hypersonic boundary layer. The primary motivation for this work is to understand scalar transport in hypersonic boundary layers and to develop a database for validation of computational models. The naphthalene is molded into a rectangular insert that is mounted flush with the floor of a Mach 5 wind tunnel. The distribution of naphthalene in the boundary layer is imaged by using PLIF, where the laser excitation is at 266 nm and the fluorescence is collected in the range of 320 to 380 nm. To investigate the use of naphthalene PLIF as a quantitative diagnostic technique, a series of experiments is conducted to determine the linearity of the fluorescence signal with laser fluence, as well as the temperature and pressure dependencies of the signal. The naphthalene fluorescence at 297 K is determined to be linear for laser fluence that is less than about 200 J/m². The temperature dependence of the naphthalene fluorescence signal is found at atmospheric pressure over the temperature range of 297K to 525K. A monotonic increase in the fluorescence is observed with increasing temperature. Naphthalene fluorescence lifetime measurements were also made in pure-air and nitrogen environments at 300 K over the range 1 kPa to 40 kPa. The results in air show the expected Stern-Volmer behavior with decreasing lifetimes at increasing pressure, whereas nitrogen exhibits the opposite trend. Preliminary PLIF images of the sublimated naphthalene are acquired in a Mach 5 turbulent boundary layer. Relatively low signal-to-noise-ratio images were obtained at a stagnation temperature of 345 K, but much higher quality images were obtained at a stagnation temperature of 380 K. The initial results indicate that PLIF of sublimating naphthalene may be an effective tool for studying scalar transport in hypersonic flows. / text
95

Contaminant Migration Through Soil-Cement Materials

Goreham, Vincent 21 March 2014 (has links)
To assess the long-term performance of soil-cement materials used in source-control remediation methods (i.e. cement-based solidification/stabilization), procedures to measure or estimate contaminant migration parameters are essential. Previous research indicates that diffusion may be an important mechanism in contaminant transport through soil-cement materials. However, there is a paucity of information regarding the diffusion of contaminants through these materials. The development of a single-reservoir diffusion apparatus and methodology to assess the effective diffusion coefficient (De) and effective porosity (ne) of dissolved, conservative, inorganic chemicals for saturated, cured, monolithic soil-cement specimens is discussed. This is the only study known to investigate these parameters for these materials. The results of tritiated water diffusion tests on 14 different soil-cement mixtures are presented and the influence of curing time and mixture properties such as water-to-cement ratio, cement content, and grain-size distribution are examined. Results suggest that, to determine reasonable assessments of the longer-term parameters, soil-cement samples should be cured for a minimum of 70 days before commencing diffusion testing. Values of ne (0.21 to 0.41) and De (2.50×10-10 m2/s to 7.0×10-10 m2/s) determined are similar to those previously determined for a number other low-hydraulic conductivity materials (i.e. saturated inactive clays). The water content of the initial mixture is shown to have a substantial effect on the diffusive properties as the results indicate that both the total porosity (n) and the effective porosity, ne, generally increase with increasing initial water content. For the range of soils used in this investigation, grain-size distribution did not have a substantial effect on the values of ne or De determined from diffusion testing. The adaptation of a double-reservoir diffusion testing apparatus and methodology to evaluate the distribution coefficient (Kd) and De of organic contaminants is also presented. This apparatus is used to evaluate Kd and De of benzene, ethylbenzene, naphthalene, and trichloroethylene for three soil-cement mixtures. Values of Kd (0 to 2.5 cm3/g depending on the compound and soil-cement mixture tested) determined from diffusion testing, batch testing, and theoretical estimates from the literature were in general agreement. Values of De for the organic compounds ranged from 1.50×10-10 to 3.0×10-10 m2/s.
96

The Synthesis of Novel and Sterically Demanding Tetra-ortho-substituted Aryl Naphthalenes

Glass, Adam Cameron, 1983- 09 1900 (has links)
xiv, 326 p. : ill. (some col.) / Tetra-ortho -substituted aryl naphthalenes (TOANs) are a motif of great importance, being present in biologically active natural products, chiral ligands, and building blocks relevant to materials science. The synthesis of sterically demanding and enantioenriched TOANs continues to be a challenge for current synthetic methods. Herein, we describe the highly effective synthesis of a variety of sterically demanding and enantioenriched TOANs through a rearrangement-based method. Our method utilizes a cyclopropyl carbinol moiety as the key rearrangement precursor. We have demonstrated that carbon-carbon coupling through a simple nucleophilic attack on a cyclopropyl indanone allows for very large aryl substrates to be added and rearranged. We discuss in detail the following: 1) the initial substrate-scope and proof-of-concept studies, 2) our progress in building the most sterically demanding TOANs to date, and 3) the asymmetric synthesis of TOANs through chiral transfer. This dissertation includes previously published and unpublished co-authored material. / Committee in charge: Michael M. Haley, Chairperson; Shih-Yuan Liu, Advisor; Darren W. Johnson, Member; Victoria J. DeRose, Member; Paul J. Wallace, Outside Member
97

Degradação de naftaleno, fenantreno e benzo(a)pireno em solos e sedimentos de ambientes costeiros, oceânicos e antárticos / Degradation of naphthalene, phenanthrene e benzo(a)pyrene in soil and sediments of coastal, oceanic and Antarctic environments

Miranda, Vando José Medeiros de 30 July 2008 (has links)
Made available in DSpace on 2015-03-26T13:53:05Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1808310 bytes, checksum: ca499fceff48952d8454c181384108c7 (MD5) Previous issue date: 2008-07-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Petroleum is the main source of fuel, and the operations of exploration, transportation, refining and distribution are potential sources of environmental pollution. In contaminated environments, the degradation of PAHs (Polycyclic Aromatic Hydrocarbons) depends on climatic factors, soil and microbial population. This study aimed to assess the potential for degradation of naphthalene, phenanthrene and benzo (a) pyrene hydrocarbons in different soils and sediments from coastal regions, both tropical and polar (Antarctica). The samples were collected in three regions, and (1) main island in the archipelago of Fernando de Noronha, (2) in the Prado coast, in southern Bahia, and (3) Islands in the South Shetlands archipelago, Antarctica. After obtaining samples of TFSA (Earth Thin Air Dried), the soils were submitted to physical and chemical analysis, and experiments were set to evaluate the degradation through respirometry, and tested the PAHs naphthalene, phenanthrene and benzo (a) pyrene. Most degradation of naphthalene was observed in soil contaminated by oil derived from oil, in Fildes (Antarctica), which was attributed to the selection of microbial populations in the efficient use of HC. The rates of degradation of phenanthrene and benzo (a) pyrene were lesser in comparison to naphthalene, which have lower molecular weight and greater solubility. The results of this study suggest that the microorganisms present in these soils, wherever there was no impact of oil spill, were not able to efficiently degrade the oil naphthalene, phenanthrene and benzo (a) pyrene, in experimental conditions tested. That would, after selection, the use of these microorganisms (adapted), the remediation of contaminants soluble in other similar areas of Antarctica. The differences between the rates of degradation of hidrocarbons relate to the levels of TOC (Total Organic Carbon) and TN (Total Nitrogen) soil of local noncontaminated. / O petróleo representa a principal fonte de combustível da humanidade, e as operações de exploração, transporte, refino e distribuição representam fontes potenciais de poluição ambiental. Em ambientes contaminados, a degradação dos HPAs (Hidrocarbonetos Policíclicos Aromáticos) depende de fatores climáticos, dos tipos de solo e das populações microbianas presentes. O presente trabalho teve por objetivo avaliar o potencial de degradação dos hidrocarbonetos naftaleno, fenantreno e benzo(a)pireno em diferentes solos e sedimentos provenientes de regiões costeiras, oceânicas tropicais e polares (Antárticas). As amostras foram coletadas em três regiões, sendo (1) na ilha principal do Arquipélago de Fernando de Noronha, (2) no litoral do Prado, no sul da Bahia, e (3) nas Ilhas do Arquipélago Shetlands do Sul, Antártica. Após a obtenção das amostras de TFSA (Terra Fina Seca ao Ar), os solos foram submetidos a análises químicas e físicas, e foram montados experimentos de degradação através de respirometria, sendo testados os HPAs naftaleno, fenantreno e benzo(a)pireno. A maior degradação de naftaleno foi observada em solo contaminado por hidrocarbonetos derivados de petróleo, em Fildes (Antártica), a qual foi atribuída à seleção de populações microbianas eficientes na utilização desse HC. A maior degradação do fenantreno e do benzo(a)pireno nos solos do Brasil ocorreu na area P5 (Manguezal de Cumuruxatiba), sendo neste caso atribuído à maior disponibilidade de nutrientes. As taxas de degradação de fenantreno e benzo(a)pireno foram menores em comparação do que a do naftaleno, que possui menor peso molecular e maior solubilidade. Os resultados deste trabalho demostram que os microrganismos presentes nos solos em estudo, onde não houve impacto conhecido de derramamento de óleo, não foram capazes de degradar eficientemente os hidrocarbonetos naftaleno, fenantreno e benzo(a)pireno, nas condições experimentais testadas. Nestes ambientes, as diferenças entre as taxas de degradação dos hidrocarbonetos se relacionam com os teores de COT (Carbono Orgânico Total) e NT (Nitrogênio Total).
98

Estudo das propriedades eletrônicas e espectroscópicas de uma série de diimidas naftálicas com substituintes aromáticos com potencial aplicação em dispositivos de armazenamento e conversão de energia / Study of the electronic and spectroscopic properties of a series of naphthalic diimides with aromatic substituents with potential application to energy storage and conversion devices

Francisco de Araújo Silva 30 May 2018 (has links)
As diimidas naftálicas simétricas têm sido vastamente estudadas devido suas propriedades químicas, ópticas, e eletrônicas. A possibilidade de modular suas propriedades com a substituição de grupos diversos na formação da imida, viabiliza aplicações em dispositivos eletrônicos, conversão de energia e produção de redes de coordenação metalo-orgânicas. Neste trabalho sintetizou-se uma série de 5 diimidas naftálicas (NDIs) simétricas com substituintes aromáticos. Foram analisadas as características espectroscópicas e eletrônicas com obtenção dos valores de band-gap óptico através de ensaios de voltametria cíclica e cálculos teóricos (DFT), mostrando a influência dos substituintes nas propriedades eletrônicas. Estas moléculas apresentam indícios de agregação em determinados solventes tornando possível a produção de filmes finos. As NDIs produzidas foram intercaladas em uma matriz inorgânica lamelar, o pentóxido de vanádio amorfo, e melhorando consideravelmente, via de regra, a capacidade específica de carga quando analisados em sistemas trocadores de íon lítio, aplicados geralmente em cátodos de bateria, com valores da ordem de 190 mA.h.g-1 (sob 100 uA, variação de E +1,2V à -1,2V). É provavelmente um dos primeiros trabalhos a utilizar NDIs em sistemas mistos de matrizes inorgânicas aplicados em trocadores de íons. Algumas apresentam potencial para dispositivos de conversão de luz em eletricidade. / Symmetric naphthalic diimides have been extensively studied due to their chemical, optical, and electronic properties. The possibility of modulating their properties by substitution with several groups in the formation of imides allows diverse applications in electronic devices, energy conversion, production of metallo-organic frameworks (MOFs). In this thesis, a series of 5 symmetrical aromatic-substituted naphthalic diimides (NDIs) were sinthesized. We have studied their optical and electronic characteristics obtaining optical band-gap with cyclic voltammetry tests and theoretical calculations (DFT), showing the influence of substituent in the electronic properties. Some of these imides may aggregate in certain solvents allowing this way the production thin films. The NDIs were intercalated in the inorganic intercalation matrix of amorphous vanadium pentoxide, and showed generally considerable improvement in the specific charge capacity when used in lithium ion exchange systems, that are usually applied in battery cathodes, reaching values of the order of 190 mA.h.g-1 (under 100 uA, E variation of + 1.2V to -1.2V). This is probably one of the first works using NDIs in mixed systems to applied inorganic matrices as ion exchangers. Some of them may be used for light conversion to electricity devices.
99

Gas-phase Ion Chemistry of Hydroxy and Amino-substituted Interstellar Polycyclic Aromatic Hydrocarbons and Protonated Polycyclic Aromatic Hydrocarbons

Ouellette, Mélanie January 2014 (has links)
The gas-phase ion chemistry of hydroxyl- and amino-substituted polycyclic aromatic hydrocarbons (PAHs) and their protonated counterparts were studied using mass spectrometry. Ions were generated using an electron ionization (EI) source and the unimolecular chemistry of metastable ions was studied by performing mass-analysed ion kinetic energy spectrometry (MIKES) experiments with a magnetic sector tandem mass spectrometer. Collision-induced dissociation (CID) experiments were used in conjunction with MIKES experiments to determine ion structure. The ten molecules studied were: 1-naphthol, 2-naphthol, 1-naphthylamine, 2-naphthylamine, 1-aminoanthracene, 2-aminoanthracene, 1-phenanthrol, 9-phenanthrol, 1-hydroxypyrene and 1-aminopyrene. Since it is believed that larger PAHs, on the order of more than 50 carbon atoms, populate the interstellar medium, the goal of this study was to attempt to extrapolate the results from smaller systems to larger ones. The trends found include: hydroxy-substituted PAH radical cations lose carbon monoxide spontaneously and amino-substituted PAH radical cations lose HCN. Mechanisms for both processes are proposed, and it appears from the present results that this process should extrapolate to larger PAHs. Another trend found was that all the remaining fragment ions were always a closed ring. Protonated amino-substituted PAHs were generated by electrospray ionization using a quadruple time-of-flight mass spectrometer. By protonating 1-naphthol and 2-naphthol using methane in the high-pressure EI source, it was found that they lost exclusively H2O. As for 2-naphthylamine, 1-aminoanthracene and 2-aminoanthracene, it was found that 2-naphthylamine lost NH3 and a hydrogen atom, NH3being the dominant channel. However, as the ion size 3 increases, the hydrogen-loss channel became the dominant channel. This means that larger PAHs will likely lose exclusively a hydrogen atom to reform the parent radical cation.
100

Setchenov parameters for naphthalene

Bouchot, Gerardo Gold 01 January 1984 (has links)
It is the purpose of this work to study the solubility of naphthalene, the simplest polycyclic aromatic hydrocarbon as a function of the salt content and the temperature, in ranges that span those likely to be found in natural ecosystems. Another goal is to set up a high-pressure generator, to study the effect of pressure on the solubility of hydrocarbons.

Page generated in 0.0505 seconds