• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 17
  • 11
  • 11
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 193
  • 38
  • 37
  • 31
  • 30
  • 22
  • 21
  • 20
  • 18
  • 18
  • 18
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Naturalistic Study of Students with Emotional/Behavioral Problems at the Secondary Level

Eckler, Jennifer w. 03 August 2010 (has links)
No description available.
72

DIABETES SELF-MANAGEMENT: PATIENT COGNITION AND THE DEVELOPMENT OF EXPERTISE

Lippa, Katherine D. 07 August 2006 (has links)
No description available.
73

Cognitively Sensitive User Interface for Command and Control Applications

Findler, Michael James 30 August 2011 (has links)
No description available.
74

A Descriptive Study of Pragmatic Skills in the Home Environment after Childhood Traumatic Brain Injury

Keck, Casey S. 13 September 2016 (has links)
No description available.
75

Professional identity development in nurses returning for a BSN: A naturalistic inquiry

Caplin, Marcy S. 14 December 2016 (has links)
No description available.
76

EMPIRICALLY-BASED INTERVENTIONS FOR ERROR MONITORING DEFICITS IN DEMENTIA

Bettcher, Brianne Magouirk January 2010 (has links)
The diminished ability to perform everyday tasks is a salient problem for individuals diagnosed with a dementia. Recent research suggest that dementia patients detect significantly fewer action errors than age-matched controls; however, very little is known about the derivation of their error monitoring difficulties. The primary aims of my dissertation were to evaluate a novel, task training action intervention (TT-NAT) designed to increase error monitoring in dementia patients, and to pinpoint the relation between error monitoring and neuropsychological processes in participants who receive the task training intervention. Results indicated that dementia participants in the TT-NAT condition produced fewer total errors and detected significantly more of their errors than individuals in the Standard condition (z = 3.0 and t = 3.36, respectively; p < . 05). Error detection in the TT-NAT condition was strongly related to the language/semantic knowledge composite index only (r = .57, p = .00), whereas it was moderately related to both the language and executive composite indices in the Standard condition. No differences in error correction rates were noted, although patients in all groups corrected the majority of errors detected. The findings suggest that the TT-NAT may be a promising intervention for error monitoring deficits in dementia patients, and have considerable implications for neuropsychological rehabilitation. / Psychology
77

Assessing the Effects of Driving Inattention on Relative Crash Risk

Klauer, Charlie 22 November 2005 (has links)
While driver distraction has been extensively studied in laboratory and empirical field studies, the prevalence of driver distraction on our nation's highways and the relative crash risk is unknown. It has recently become technologically feasible to conduct unobtrusive large-scale naturalistic driving studies as the costs and size of computer equipment and sensor technology have both dramatically decreased. A large-scale naturalistic driving study was conducted using 100 instrumented vehicles (80 privately-owned and 20 leased vehicles). This data collection effort was conducted in the Washington DC metropolitan area on a variety of urban, suburban, and rural roadways over a span of 12-13 months. Five channels of video and kinematic data were collected on 69 crashes and 761 near-crashes during the course of this data collection effort. The analyses conducted here are the first to establish direct relationships between driving inattention and crash and near-crash involvement. Relative crash risk was calculated using both crash and near-crash data as well as normal, baseline driving data, for various sources of inattention. Additional analyses investigated the environmental conditions drivers choose to engage in secondary tasks or drive fatigued, assessed whether questionnaire data were indicative of an individual's propensity to engage in inattentive driving, and examined the impact of driver's eyes off the forward roadway. The results indicated that driving inattention was a contributing factor in 78% of all crashes and 65% of all near-crashes. Odds ratio calculations indicated that fatigued drivers have a 4 times higher crash risk than alert drivers. Drivers engaging in visually and/or manually complex tasks are at 7 times higher crash risk than alert drivers. There are specific environmental conditions in which engaging in secondary tasks or driving fatigued is deemed to be more dangerous, including intersections, wet roadways, undivided highways, curved roadways, and driving at dusk. Short, brief glances away from the forward roadway for the purpose of scanning the roadway environment (e.g., mirrors and blind spots) are safe and decrease crash risk, whereas such glances that total more than 2 seconds away from the forward roadway are dangerous and increase crash risk by 2 times over that of more typical driving. / Ph. D.
78

Representation Learning Based Causal Inference in Observational Studies

Lu, Danni 22 February 2021 (has links)
This dissertation investigates novel statistical approaches for causal effect estimation in observational settings, where controlled experimentation is infeasible and confounding is the main hurdle in estimating causal effect. As such, deconfounding constructs the main subject of this dissertation, that is (i) to restore the covariate balance between treatment groups and (ii) to attenuate spurious correlations in training data to derive valid causal conclusions that generalize. By incorporating ideas from representation learning, adversarial matching, generative causal estimation, and invariant risk modeling, this dissertation establishes a causal framework that balances the covariate distribution in latent representation space to yield individualized estimations, and further contributes novel perspectives on causal effect estimation based on invariance principles. The dissertation begins with a systematic review and examination of classical propensity score based balancing schemes for population-level causal effect estimation, presented in Chapter 2. Three causal estimands that target different foci in the population are considered: average treatment effect on the whole population (ATE), average treatment effect on the treated population (ATT), and average treatment effect on the overlap population (ATO). The procedure is demonstrated in a naturalistic driving study (NDS) to evaluate the causal effect of cellphone distraction on crash risk. While highlighting the importance of adopting causal perspectives in analyzing risk factors, discussions on the limitations in balance efficiency, robustness against high-dimensional data and complex interactions, and the need for individualization are provided to motivate subsequent developments. Chapter 3 presents a novel generative Bayesian causal estimation framework named Balancing Variational Neural Inference of Causal Effects (BV-NICE). Via appealing to the Robinson factorization and a latent Bayesian model, a novel variational bound on likelihood is derived, explicitly characterized by the causal effect and propensity score. Notably, by treating observed variables as noisy proxies of unmeasurable latent confounders, the variational posterior approximation is re-purposed as a stochastic feature encoder that fully acknowledges representation uncertainties. To resolve the imbalance in representations, BV-NICE enforces KL-regularization on the respective representation marginals using Fenchel mini-max learning, justified by a new generalization bound on the counterfactual prediction accuracy. The robustness and effectiveness of this framework are demonstrated through an extensive set of tests against competing solutions on semi-synthetic and real-world datasets. In recognition of the reliability issue when extending causal conclusions beyond training distributions, Chapter 4 argues ascertaining causal stability is the key and introduces a novel procedure called Risk Invariant Causal Estimation (RICE). By carefully re-examining the relationship between statistical invariance and causality, RICE cleverly leverages the observed data disparities to enable the identification of stable causal effects. Concretely, the causal inference objective is reformulated under the framework of invariant risk modeling (IRM), where a population-optimality penalty is enforced to filter out un-generalizable effects across heterogeneous populations. Importantly, RICE allows settings where counterfactual reasoning with unobserved confounding or biased sampling designs become feasible. The effectiveness of this new proposal is verified with respect to a variety of study designs on real and synthetic data. In summary, this dissertation presents a flexible causal inference framework that acknowledges the representation uncertainties and data heterogeneities. It enjoys three merits: improved balance to complex covariate interactions, enhanced robustness to unobservable latent confounders, and better generalizability to novel populations. / Doctor of Philosophy / Reasoning cause and effect is the innate ability of a human. While the drive to understand cause and effect is instinct, the rigorous reasoning process is usually trained through the observation of countless trials and failures. In this dissertation, we embark on a journey to explore various principles and novel statistical approaches for causal inference in observational studies. Throughout the dissertation, we focus on the causal effect estimation which answers questions like ``what if" and ``what could have happened". The causal effect of a treatment is measured by comparing the outcomes corresponding to different treatment levels of the same unit, e.g. ``what if the unit is treated instead of not treated?". The challenge lies in the fact that i) a unit only receives one treatment at a time and therefore it is impossible to directly compare outcomes of different treatment levels; ii) comparing the outcomes across different units may involve bias due to confounding as the treatment assignment potentially follows a systematic mechanism. Therefore, deconfounding constructs the main hurdle in estimating causal effects. This dissertation presents two parallel principles of deconfounding: i) balancing, i.e., comparing difference under similar conditions; ii) contrasting, i.e., extracting invariance under heterogeneous conditions. Chapter 2 and Chapter 3 explore causal effect through balancing, with the former systematically reviews a classical propensity score weighting approach in a conventional data setting and the latter presents a novel generative Bayesian framework named Balancing Variational Neural Inference of Causal Effects(BV-NICE) for high-dimensional, complex, and noisy observational data. It incorporates the advance deep learning techniques of representation learning, adversarial learning, and variational inference. The robustness and effectiveness of the proposed framework are demonstrated through an extensive set of experiments. Chapter 4 extracts causal effect through contrasting, emphasizing that ascertaining stability is the key of causality. A novel causal effect estimating procedure called Risk Invariant Causal Estimation(RICE) is proposed that leverages the observed data disparities to enable the identification of stable causal effects. The improved generalizability of RICE is demonstrated through synthetic data with different structures, compared with state-of-art models. In summary, this dissertation presents a flexible causal inference framework that acknowledges the data uncertainties and heterogeneities. By promoting two different aspects of causal principles and integrating advance deep learning techniques, the proposed framework shows improved balance for complex covariate interactions, enhanced robustness for unobservable latent confounders, and better generalizability for novel populations.
79

Optimal Driver Risk Modeling

Mao, Huiying 21 August 2019 (has links)
The importance of traffic safety has prompted considerable research on predicting driver risk and evaluating the impact of risk factors. Driver risk modeling is challenging due to the rarity of motor vehicle crashes and heterogeneity in individual driver risk. Statistical modeling and analysis of such driver data are often associated with Big Data, considerable noise, and lacking informative predictors. This dissertation aims to develop several systematic techniques for traffic safety modeling, including finite sample bias correction, decision-adjusted modeling, and effective risk factor construction. Poisson and negative binomial regression models are primary statistical analysis tools for traffic safety evaluation. The regression parameter estimation could suffer from the finite sample bias when the event frequency (e.g., the total number of crashes) is low, which is commonly observed in safety research. Through comprehensive simulation and two case studies, it is found that bias adjustment can provide more accurate estimation when evaluating the impacts of crash risk factors. I also propose a decision-adjusted approach to construct an optimal kinematic-based driver risk prediction model. Decision-adjusted modeling fills the gap between conventional modeling methods and the decision-making perspective, i.e., on how the estimated model will be used. The key of the proposed method is to enable a decision-oriented objective function to properly adjust model estimation by selecting the optimal threshold for kinematic signatures and other model parameters. The decision-adjusted driver-risk prediction framework can outperform a general model selection rule such as the area under the curve (AUC), especially when predicting a small percentage of high-risk drivers. For the third part, I develop a Multi-stratum Iterative Central Composite Design (miCCD) approach to effectively search for the optimal solution of any "black box" function in high dimensional space. Here the "black box" means that the specific formulation of the objective function is unknown or is complicated. The miCCD approach has two major parts: a multi-start scheme and local optimization. The multi-start scheme finds multiple adequate points to start with using space-filling designs (e.g. Latin hypercube sampling). For each adequate starting point, iterative CCD converges to the local optimum. The miCCD is able to determine the optimal threshold of the kinematic signature as a function of the driving speed. / Doctor of Philosophy / When riding in a vehicle, it is common to have personal judgement about whether the driver is safe or risky. The drivers’ behavior may affect your opinion, for example, you may think a driver who frequently hard brakes during one trip is a risky driver, or perhaps a driver who almost took a turn too tightly may be deemed unsafe, but you do not know how much riskier these drivers are compared to an experienced driver. The goal of this dissertation is to show that it is possible to quantify driver risk using data and statistical methods. Risk quantification is not an easy task as crashes are rare and random events. The wildest driver may have no crashes involved in his/her driving history. The rareness and randomness of crash occurrence pose great challenges for driver risk modeling. The second chapter of this dissertation deals with the rare-event issue and provides more accurate estimation. Hard braking, rapid starts, and sharp turns are signs of risky driving behavior. How often these signals occur in a driver’s day-to-day driving reflects their driving habits, which is helpful in modeling driver risk. What magnitude of deceleration would be counted as a hard brake? How hard of a corner would be useful in predicting high-risk drivers? The third and fourth chapter of this dissertation attempt to find the optimal threshold and quantify how much these signals contribute to the assessment of the driver risk. In Chapter 3, I propose to choose the threshold based on the specific application scenario. In Chapter 4, I consider the threshold under different speed limit conditions. The modeling and results of this dissertation will be beneficial for driver fleet safety management, insurance services, and driver education programs.
80

Driver Behavior in Car Following - The Implications for Forward Collision Avoidance

Chen, Rong 13 July 2016 (has links)
Forward Collision Avoidance Systems (FCAS) are a type of active safety system which have great potential for rear-end collision avoidance. These systems use either radar, lidar, or cameras to track objects in front of the vehicle. In the event of an imminent collision, the system will warn the driver, and, in some cases, can autonomously brake to avoid a crash. However, driver acceptance of the systems is paramount to the effectiveness of a FCAS system. Ideally, FCAS should only deliver an alert or intervene at the last possible moment to avoid nuisance alarms, and potentially have drivers disable the system. A better understanding of normal driving behavior can help designers predict when drivers would normally take avoidance action in different situations, and customize the timing of FCAS interventions accordingly. The overall research object of this dissertation was to characterize normal driver behavior in car following events based on naturalistic driving data. The dissertation analyzed normal driver behavior in car-following during both braking and lane change maneuvers. This study was based on the analysis of data collected in the Virginia Tech Transportation Institute 100-Car Naturalistic Driving Study which involved over 100 drivers operating instrumented vehicles in over 43,000 trips and 1.1 million miles of driving. Time to Collision in both braking and lane change were quantified as a function of vehicle speed and driver characteristics. In general, drivers were found to brake and change lanes more cautiously with increasing vehicle speed. Driver age and gender were found to have significant influence on both time to collision and maximum deceleration during braking. Drivers age 31-50 had a mean braking deceleration approximately 0.03 g greater than that of novice drivers (age 18-20), and female drivers had a marginal increase in mean braking deceleration as compared to male drivers. Lane change maneuvers were less frequent than braking maneuvers. Driver-specific models of TTC at braking and lane change were found to be well characterized by the Generalized Extreme Value distribution. Lastly, driver's intent to change lanes can be predicted using a bivariate normal distribution, characterizing the vehicle's distance to lane boundary and the lateral velocity of the vehicle. This dissertation presents the first large scale study of its kind, based on naturalistic driving data to report driver behavior during various car-following events. The overall goal of this dissertation is to provide a better understanding of driver behavior in normal driving conditions, which can benefit automakers who seek to improve FCAS effectiveness, as well as regulatory agencies seeking to improve FCAS vehicle tests. / Ph. D.

Page generated in 0.0893 seconds