Spelling suggestions: "subject:"nearfield SHG"" "subject:"nearefield SHG""
1 |
Tip-enhanced near-field optical microscopyNeacsu, Corneliu Catalin 14 February 2011 (has links)
Die vorliegende Arbeit beschreibt neue Entwicklungen im Verständnis und in der Umsetzung der optischen Nahfeldmikroskopie (scattering - type scanning near-field optical microscopy, s-SNOM) für die lineare und nichtlineare optische Bildgebung mit ultrahoher Auslösung und Empfindlichkeit. Die fundamentalen Mechanismen, die der Feldverstärkung am Ende von ultrascharfen metallischen Spitzen zugrunde liegen, werden systematisch behandelt. Die plasmonischen Eigenschaften der Spitze wurden erstmalig beobachtet, und ihre Bedeutung für die optische Kopplung zwischen Spitze und Probe sowie für die sich ergebende Einengung des Nahfeldes wird diskutiert. Ein aperturloses Nahfeldmikroskop für die spitzenverstärkte Ramanspektroskopie (tip-enhanced Raman spectroscopy, TERS) wurde entwickelt. Die Grundlagen der TERS und die wesentliche Rolle des plasmonischen Verhaltens der Spitze sowie die klare Unterscheidung von Nahfeld-Ramansignatur und Fernfeld-Abbildungsartefakten werden beschrieben. Nahfeld Raman Verstärkungsfaktoren von bis zu 10 wurden erreicht, was einer Feldverstärkung von bis zu 130 entspricht und Raman-Messungen bis auf Einzel-Molekül-Niveau ermöglichte. Die optische Frequenzverdopplung (second harmonic generation, SHG) an einzelnen Spitzen wurde untersucht. Aufgrund ihrer teilweise asymmetrischen Nanostruktur erlauben die Spitzen eine klare Unterscheidung von lokalen Oberflächen und nichtlokalen Volumenbeiträgen zur nichtlinearen Polarisation sowie die Analyse ihrer Polarisations- und Emissions-Auswahlregeln. Die spitzenverstärkte Frequenzverdopplungs-Spektroskopie und die räumlich hoch aufgelöste Abbildung auf Basis des dielektrischen Kontrasts werden demonstriert. Mit Hilfe einer phasen-sensitiven, Selbst-homodyn-Frequenzverdopplungs-s-SNOM-Abbildungsmethode kann die Oberflächen-Struktur der intrinsischen 180-Domänen im hexagonal multiferroischen YMnO aufgelöst werden. / This thesis describes the implementation of scattering-type near-field optical microscopy (s-SNOM) for linear and nonlinear optical imaging. The technique allows for optical spectroscopy with ultrahigh spatial resolution. New results on the microscopic understanding of the imaging mechanism and the employment of s-SNOM for structure determination at solid surfaces are presented. The method relies on the use of metallic probe tips with apex radii of only few nanometers. The local-field enhancement and its dependence on material properties are investigated. The plasmonic character of Au tips is identified and its importance for the optical tip-sample coupling and subsequent near-field confinement are discussed. The experimental results offer valuable criteria in terms of tip-material and structural parameters for the choice of suitable tips required in s-SNOM. An near-field optical microscope is developed for tip-enhanced Raman spectroscopy (TERS) studies. The principles of TERS and the role of the tip plasmonic behavior together with clear distinction of near-field Raman signature from far-field imaging artifacts are described. TERS results of monolayer and submonolayer molecular coverage on smooth Au surfaces are presented. Second harmonic generation (SHG) from individual tips is investigated. As a partially asymmetric nanostructure, the tip allows for the clear distinction of local surface and nonlocal bulk contributions to the nonlinear polarization and the analysis of their polarization and emission selection rules. Tip-enhanced SH microscopy and dielectric contrast imaging with high spatial resolution are demonstrated. SHG couples directly to the ferroelectric ordering in materials and in combination with scanning probe microscopy can give access to the morphology of mesoscopic ferroelectric domains. Using a phase sensitive self-homodyne SHG s-SNOM imaging method, the surface topology of 180 intrinsic domains in hexagonal multiferroic YMnO is resolved.
|
Page generated in 0.0345 seconds