• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 10
  • 10
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation de la diffusion intermembranaire des ions de chlorure dans un neurone pyramidal hippocampique /

Fontaine, Charlotte. January 2007 (has links) (PDF)
Thèse (M.Sc.)--Université Laval, 2007. / Bibliogr.: f. 66-70. Publié aussi en version électronique dans la Collection Mémoires et thèses électroniques.
2

Impact des potentiels synaptiques miniatures sur les neurones pyramidaux du néocortex, in vitro /

Lebel, Elen. January 1997 (has links)
Thèse (M.Sc.) -- Université Laval, 1997. / Bibliogr.: f. [51]-65. Publ. aussi en version électronique.
3

Cell- and input-specific expression of the α5-GABAAR in the CA1 area of the mouse hippocampus

Amalyan, Sona 22 November 2018 (has links)
Dans l'hippocampe, les processus de mémoire et d'apprentissage dépendent fortement de l'inhibition GABAergique, qui est fournis par une population hétérogène d'interneurones (INs) via l'activation de sous-types spécifiques de récepteurs GABA. La sous-unité alpha5-GABAAR (α5-GABAAR) est fortement exprimée dans l'hippocampe de la souris, du singe et du cerveau humain. Il a été rapporté que, dans les cellules pyramidales CA1, cette sous-unité est principalement localisée sur les sites extrasynaptiques, où elle est responsable de la génération de la conductance inhibitrice tonique. Si la sous-unité α5-GABAAR peut être ciblée sur des types spécifiques de synapses dans des types cellulaires distincts reste inconnue. En utilisant l'immunohistochimie dans des coupes d'hippocampe de souris, nous avons étudié l'expression spécifique de la sous-unité α5-GABAAR dans les cellules et les synapses de l’oriens/alveus de le région CA1. Nos résultats démontrent que la sous-unité α5-GABAAR est principalement exprimée dans les INs positifs à la somatostatine. De plus, la densité de sous-unité était plus élevée dans les dendrites proximales et diminuait avec la distance par rapport au soma, ce qui correspond à une diminution de la densité des synapses inhibitrices dépendant de la distance. De plus, l'α5-GABAAR ciblait les synapses formées par les entrées exprimant le peptide intestinal vasoactif (VIP+) et la calrétinine (CR+) et, dans une moindre mesure, celles produites par les projections exprimant de la parvalbumine (PV+). En résumé, nos résultats montrent que la sous-unité α5-GABAAR présente une expression spécifique à la cellule et à la synapse dans l'hippocampe CA1. Comme la sous-unité α5-GABAAR a été impliquée dans plusieurs maladies, comprenant la maladie d'Alzheimer et le syndrome de Down, les nouvelles connaissances sur la localisation de l'α5-GABAAR seront importantes pour le développement de la thérapie cellulaire spécifique. / In the hippocampus, memory and learning processes are highly dependent on the GABAergic inhibition, which is provided by a heterogeneous population of interneurons (INs) via activation of specific sub-types of GABA receptors. The alpha5-GABAAR subunit (α5-GABAAR) is highly expressed in the hippocampus of the mouse, monkey and human brain. It has been reported that, in the CA1 pyramidal cells, this subunit is predominantly located at extrasynaptic sites, where it is responsible for generation of tonic inhibitory conductance. Whether the α5-GABAAR subunit can be targeted to specific types of synapses in distinct cell types remains unknown. Using immunohistochemistry and electophysiological approach in mouse hippocampal slices, we studied the cell- and synapse-specific expression of the α5-GABAAR subunit in the CA1 oriens/alveus INs. Our results demonstrate that the α5-GABAAR subunit is mainly expressed in the somatostatin-positive INs. In addition, the subunit density was higher in proximal dendrites and declined with distance from the soma, consistent with a distance-dependent decrease in the density of inhibitory synapses. Furthermore, the α5-GABAAR was targeted to synapses made by the vasoactive intestinal peptide (VIP+)- and calretinin (CR+)-expressing inputs and to a lesser extent to those made by the parvalbumin-positive (PV+) projections. In summary, our results show that the α5-GABAAR subunit exhibits a cell- and input-specific expression in the CA1 hippocampus. As the α5-GABAAR subunit has been implicated in several diseases, including Alzheimer’s disease and Down syndrome, the new insights into the α5-GABAAR localization will be important for the development of cell- and site-specific therapy.
4

Etude de la balance Excitation / Inhibition des neurones pyramidaux du cortex visuel de rat

Amar, Muriel 19 February 2009 (has links) (PDF)
Les travaux de l'équipe sont centrés sur la régulation de l'excitabilité et de la plasticité des réseaux neuronaux. La modulation de l'intégration synaptique est étudiée au niveau cortical où il s'agit de déterminer quels sont les acteurs de la plasticité homéostatique et comment l'action spécifique de certains types de récepteurs (cholinergique, sérotoninergique) peut moduler la balance excitation/inhibition déterminée dans des neurones pyramidaux de couche 5 qui génèrent les signaux de sortie du cortex visuel.
5

Contrôle homéostatique de l'activité corticale: Etude de la balance Excitation / Inhibition des neurones pyramidaux de couche 5 du cortex visuel.

Le Roux, Nicolas 21 June 2007 (has links) (PDF)
La plasticité homéostatique est un processus qui consiste à réguler l'efficacité globale des entrées synaptiques (excitatrices et inhibitrices) sur un neurone afin d'empêcher des modifications trop importantes de son niveau d'activité. Afin de caractériser les mécanismes à l'origine de ce processus, la balance Excitation/Inhibition des neurones pyramidaux de couche 5 du cortex visuel a été estimée. Elle est composée de 20 % d'excitation et de 80 % d'inhibition. A l'aide de protocoles de stimulation induisant des changements à long terme de l'efficacité des entrées synaptiques, les phénomènes de potentiation homéostatique et de dépression homéostatique ont été mis en évidence. L'induction de ces phénomènes, qui requiert l'activation de récepteurs NMDA et d'un signal NO, est sous le contrôle des systèmes inhibiteurs GABAergique et glycinergique. La récurrence entre signaux excitateurs et inhibiteurs apparaît comme l'élément clé de la régulation de l'activité neuronale.
6

Modélisation de la diffusion intermembranaire des ions de chlorure dans un neurone pyramidal hippocampique

Fontaine, Charlotte 12 April 2018 (has links)
L'hippocampe est l'endroit central où s'élaborent les processus de mémorisation et d'apprentissage. C'est aussi le siège de plusieurs maladies dégénératives telles que Pépilepsie, l'ischémie et autres désordres psychiatriques. Le récepteur ionotropique GABAA et le co-transporteur KCC2 sont des composants complexes qui résident dans les synapses GABAergiques de l'hippocampe. Leur fonctionnement est régi par une relation de coopération dynamique assurée par des échanges ioniques. Les ions chlorure jouent un rôle prépondérant et leur distribution hétérogène serait un indicateur d'anomalie : pathologie ou trouble de mémorisation. Dans le cadre de cette maîtrise, nous proposons un travail portant sur la modélisation du comportement diffusif des ions chlorure géré par l'action coopérative GABAA et KCC2. Dans une première partie nous présenterons une revue bibliographique sur les fondements de neurobiologie. Nous développerons particulièrement les aspects touchant les phénomènes de connectivité des neurones, de localisation et de structure des différents récepteurs et canaux ioniques. Dans la deuxième partie, nous démontrerons les principes fondamentaux des phénomènes de diffusion. Nous nous limiterons aux cas essentiels de la diffusion macroscopique avec ou sans force externe et à la théorie de la marche aléatoire. Un chapitre sera consacré aux éléments finis, méthode de résolution des équations différentielles partielles, et code Femlab utilisés pour représenter la dynamique des mouvements intermembranaires des ions chlorures. Nous mettrons l'accent sur les exigences et les pièges à éviter pour obtenir un modèle stable et près de la réalité de l'objet. Finalement, nous donnerons les résultats obtenus en modélisation et en simulation. / The hippocampus is the central place where the processes of memorizing and training are worked out. It is also the seat of several degenerative diseases such as the psychiatric disorders, epilepsy and ischaemia. The ligand-gated channel GABAA and the KCC2 cotransporter are complex components which reside in GABAergics synapses of the hippocampus. Their operation is governed by a dynamic relation of co-operation ensured by ionic exchanges. The chloride ions play a dominating part and their heterogeneous distribution would be an indicator of anomaly: pathology or disorder of memorizing. Within the framework of this control, we propose a bearing work on the modeling pf the diffusive behavior of the chloride ions managed by the co-operative action of GABAA and KCC2. In a first part we will present a bibliographical review on the bases of neurobiology. Wc will particularly develop the aspects concerning the phenomena of connectivity of the neurons, localization and structure of the various ionic channels. In the second part, we will show the fundamental principles of the phenomena of diffusion. We will limit ourselves to the essential cases of the macroscopic diffusion with or without external force and to the theory of random walk. A chapter will be devoted to the finite elements, a method of resolution of partial differential equations, and Femlab codes used to represent the dynamics of the intermembrane movements of chloride ions. We will stress the requirements and the traps to avoid to obtain a stable model and close to the reality of the object. Finally, we will give the results obtained in modeling and simulation.
7

Pathophysiologie du traitement de l’information dans les dendrites néocorticales dans le Syndrome de l’X Fragile / Pathophysiology of information processing in neocortical dendrites in Fragile X Syndrome

Bonnan, Audrey 20 December 2012 (has links)
Le Syndrome de l’X Fragile (SXF) est la forme héréditaire de retard mental la plus fréquente et la cause la mieux caractérisée de troubles du spectre autistique (TSA). Elle est causée par une mutation causant l’inactivation du gène Fmr1 (codant pour la protéine FMRP). La sensibilité accrue aux stimuli sensoriels est une caractéristique importante du SXF et des TSA, mais les mécanismes sous-jacents sont encore mal compris. Nous avons constaté que la suppression du gène Fmr1 entrainait une hyperexcitabilité sensorielle dans le modèle murin du SXF. Les souris Fmr1KO nécessitaient significativement moins d'informations tactiles pour l'exploration haptique, et les représentations évoquées par les informations tactiles provenant des vibrisses dans le cortex somatosensoriel primaire (S1) se propageaient à une vitesse plus élevée chez les souris Fmr1KO par rapport aux souris témoins sauvages.Au niveau cellulaire, il a été montré que les ARNm de plusieurs sous-unités de canaux ioniques (par exemple HCN1, KCNMA1) jouant un rôle clé dans le traitement de l'information dendritique / neuronale étaient des cibles de la protéine FMRP (Liao et al, 2008; Darnell et al, 2011). Sur la base de ces observations, nous avons étudié les canalopathies comme une caractéristique importante du SXF. Nous avons testé de possibles dysfonctionnement des canaux ioniques, et leurs conséquences sur le traitement de l'information dendritique dans les neurones pyramidaux du néocortex de la couche 5 chez les souris Fmr1KO, en utilisant une combinaison d’approches électrophysiologiques et d’imagerie calcique bi-photonique. Nos résultats ont montré que les dendrites des neurones pyramidaux du S1 étaient hyperexcitables, facilitant ainsi le couplage des entrées d’information synaptique à la génération de potentiel d'action en sortie dans les neurones. Cette altération était, au moins en partie, attribuable à un dysfonctionnement des canaux Ih et BKCa et a été partiellement restaurée par l'activation pharmacologique des canaux BKCa. Ces résultats plaident en faveur d'un rôle nouveau et crucial des canalopathies dans l'expression de l'hyperexcitabilité sensorielle dans le SXF. / Fragile X Syndrome (FXS) is the most common form of inherited mental retardation syndrome and most well characterized cause of Autism Spectrum Disorders (ASD), and it is caused by a silencing mutation of the gene Fmr1 (encoding the protein FMRP). Increased sensitivity to sensory stimuli is a prominent feature of FXS and ASD, but its underlying mechanisms are poorly understood. We found that deletion of the Fmr1 gene results in somatosensory hyper-excitability in a mouse model for FXS. Fmr1 knockout (Fmr1KO) mice required significantly less tactile information for haptic exploration, and touch-evoked whisker representations in the primary somatosensory cortex (S1) spread with increased velocity in Fmr1KO mice compared to wild-type control. At the cellular level, it has been shown that the mRNAs of several ion channel subunits (e.g. HCN1, KCNMA1) playing key roles in dendritic/neuronal information processing are regulated by FMRP (Liao et al., 2008; Darnell et al., 2011). Based on these observations, we investigated channelopathies as a prominent feature of FXS. We probed ion channel dysfunction, and its consequence for dendritic information processing in neocortical pyramidal neurons of layer 5 in Fmr1KO mice, using a combination of electrophysiological and 2-photon calcium imaging approaches. Our results showed that dendrites of S1 pyramidal neurons were hyper-excitable, facilitating the coupling of synaptic input to the generation of action potential output in these neurons. This defect was, at least in part, attributable to a dysfunction of Ih channels and BKCa channels and was partially rescued by pharmacological activation of BKCa channels. These findings argue for a novel and critical role for channelopathies in the expression of sensory hyper-excitability in FXS.
8

Nouveaux aspects de la fonction axonale dans le néocortex et l'hippocampe de rat

Bialowas, Andrzej 20 September 2012 (has links)
Le neurone est une cellule polarisée qui se divise en deux compartiments spécialisés : le compartiment somato-dendritique et le compartiment axonal. Généralement, le premier reçoit l'information en provenance d'autres neurones et le second génère un message en sortie lorsque la somme des entrées dépasse une valeur seuil au segment initial de l'axone. Ce signal de nature discrète appelé potentiel d'action (PA) est propagé activement jusqu'à la terminaison synaptique où il déclenche la transmission chimique de l'information. Cependant, la fonction axonale ne se résume pas à la simple transmission des séquences de PA à l'image d'un câble de télégraphe. L'axone est également capable de transmettre des variations continues de signaux électriques infraliminaires dit analogues et les combiner avec l'information digitale véhiculée par le PA. J'ai consacré la majorité de mon travail de thèse à l'étude de ce nouvel aspect de la fonction axonale dans le cadre de la transmission synaptique entre les neurones pyramidaux au sein du réseau excitateur CA3 de l'hippocampe de rat. Les résultats obtenus à partir d'enregistrements de paires de neurones pendant ma thèse mettent en évidence deux sortes de signalisation analogue et digitale qui aboutissent à la facilitation de la transmission synaptique. La facilitation analogue-digitale (FAD) a été observée lors d'une dépolarisation prolongée, mais également à la suite d'une hyperpolarisation transitoire au niveau du corps cellulaire. Ce sont deux versants d'une même plasticité à court-terme qui découle de l'état biophysique des canaux ioniques sensibles au voltage étant à l'origine du PA. / The neuron is a polarised cell divided into two specialized compartments: the somato-dendritic and the axonal compartment. Generally, the first one receives information arriving from other neurones and the second generates an output message, when the sum of inputs exceeds a threshold value at the axon initial segment. This all-or-none signal, called the action potential (AP) is propagated actively to the synaptic terminal where it triggers chemical transmission of information. However, axonal function is not limited to transmission of AP sequences like a telegraph cable. The axon is also capable of transmitting continuously changing sub-threshold electric signals called analogue signals and to combine them with the digital information carried by the AP. I devoted the majority of my thesis work to the study of these novel aspects of axonal function in the framework of synaptic transmission between pyramidal neurons in the CA3 excitatory network of the rat hippocampus. The results obtained through paired recordings brought to light two kinds of analogue and digital signalling that lead to a facilitation of synaptic transmission. Analogue-digital facilitation (ADF) was observed during prolonged presynaptic depolarization and also after a transient hyperpolarization of the neuronal cell body. These are two sides of the same form of short-term synaptic plasticity depending on the biophysical state of voltage gated ion channels responsible for AP generation. The first variant of ADF induced by depolarization (ADFD) is due to AP broadening and involves Kv1 potassium channels.
9

Plasticity of neuroanatomical relationships between cholinergic and dopaminergic axon varicosities and pyramidal cells in the rat medial prefrontal cortex

Zhang, Zi Wei ZW 09 1900 (has links)
Les systèmes cholinergique et dopaminergique jouent un rôle prépondérant dans les fonctions cognitives. Ce rôle est exercé principalement grâce à leur action modulatrice de l’activité des neurones pyramidaux du cortex préfrontal. L’interaction pharmacologique entre ces systèmes est bien documentée mais les études de leurs interactions neuroanatomiques sont rares, étant donné qu’ils sont impliqués dans une transmission diffuse plutôt que synaptique. Ce travail de thèse visait à développer une expertise pour analyser ce type de transmission diffuse en microscopie confocale. Nous avons étudié les relations de microproximité entre ces différents systèmes dans le cortex préfrontal médian (mPFC) de rats et souris. En particulier, la densité des varicosités axonales en passant a été quantifiée dans les segments des fibres cholinergiques et dopaminergiques à une distance mutuelle de moins de 3 µm ou à moins de 3 µm des somas de cellules pyramidales. Cette microproximité était considérée comme une zone d’interaction probable entre les éléments neuronaux. La quantification était effectuée après triple-marquage par immunofluorescence et acquisition des images de 1 µm par microscopie confocale. Afin d’étudier la plasticité de ces relations de microproximité, cette analyse a été effectuée dans des conditions témoins, après une activation du mPFC et dans un modèle de schizophrénie par déplétion des neurones cholinergiques du noyau accumbens. Les résultats démontrent que 1. Les fibres cholinergiques interagissent avec des fibres dopaminergiques et ce sur les mêmes neurones pyramidaux de la couche V du mPFC. Ce résultat suggère différents apports des systèmes cholinergique et dopaminergique dans l’intégration effectuée par une même cellule pyramidale. 2. La densité des varicosités en passant cholinergiques et dopaminergiques sur des segments de fibre en microproximité réciproque est plus élevée comparé aux segments plus distants les uns des autres. Ce résultat suggère un enrichissement du nombre de varicosités axonales dans les zones d’interaction. 3. La densité des varicosités en passant sur des segments de fibre cholinergique en microproximité de cellules pyramidales, immunoúactives pour c-Fos après une stimulation visuelle et une stimulation électrique des noyaux cholinergiques projetant au mPFC est plus élevée que la densité des varicosités de segments en microproximité de cellules pyramidales non-activées. Ce résultat suggère un enrichissement des varicosités axonales dépendant de l’activité neuronale locale au niveau de la zone d'interaction avec d'autres éléments neuronaux. 4. La densité des varicosités en passant des fibres dopaminergiques a été significativement diminuée dans le mPFC de rats ayant subi une déplétion cholinergique dans le noyau accumbens, comparée aux témoins. Ces résultats supportent des interrelations entre la plasticité structurelle des varicosités dopaminergiques et le fonctionnement cortical. L’ensemble des donneès démontre une plasticité de la densité locale des varicosités axonales en fonction de l’activité neuronale locale. Cet enrichissement activité-dépendant contribue vraisemblablement au maintien d’une interaction neurochimique entre deux éléments neuronaux. / The cognitive functions of the rat medial prefrontal cortex (mPFC) are modulated by ascending modulatory systems such as the cholinergic and dopaminergic afferent systems. However, despite the well-documented pharmacological interactions between the cholinergic and dopaminergic afferents and pyramidal cells in the PFC, there is only scarce neuroanatomical data on the reciprocal interrelationships between these neuronal elements in the mPFC. This might be due to the diffuse rather than synaptic transmission mode of intercellular communication of the cholinergic system in the mPFC. For these reasons, the neuroanatomical relationships between the cholinergic and dopaminergic systems and pyramidal cells in the mPFC are examined, with an emphasis on the local density of the cholinergic and dopaminergic axon varicosities. To analyze the plasticity of these interrelationships, the two systems were examined in condition of increased neuronal activity in the mPFC, or of decrease dopaminergic activity in a model of schizophrenia. The microproximity relationships between cholinergic and dopaminergic fibers as well as with pyramidal cells were studied in the mPFC of rats and mice. In particular, the number of axon varicosities in cholinergic and dopaminergic fiber segments within 3 µm from each other or from pyramidal cells were quantified. This microproximity was considered as a possible interaction zone between two neuronal elements. Quantification was performed using triple immunofluorescence labeling and acquisition of 1 µm optic sections using confocal microscopy. To assess the plasticity of these relationships, the analysis has been performed in control condition as well as after a cortical activation or a decreased dopaminergic input in a schizophrenia model. Our results demonstrate a neuroanatomical convergence of cholinergic and dopaminergic fibers on the same pyramidal cell from layer V (output) of mPFC, suggestinggests the integration of different types of inputs by the same pyramidal cell, which may be transmitted to subcortical areas to execute prefrontal cognitive control. Close apposition between cholinergic and dopaminergic fibers could also be seen in the mPFC. There was an increase of the density of cholinergic and dopaminergic en passant varicosities on those fiber segments within microproximity of each other, compared to those outside the reciprocal microproximity, supporting functional importance of the close apposition between those two ascending neuromodulatory systems into the mPFC. There was enrichment of cholinergic en passant varicosities on the fiber segments within microproximity of c-Fos activated pyramidal cells in the mPFC of visually and HDB electrically stimulated rats, indicating association between axonal varicosity density and the local neuronal activity. There was decrease of dopaminergic en passant varicosities in the mPFC of rats with ChAT depletion in the N.Acc., compared to controls. This evidence supports the association between dopaminergic axonal varicosities and relevant neuronal activity in a complex neuronal network. This thesis shows that the density of cholinergic and dopaminergic axonal varicosity density in the mPFC is influenced by and contributes to the relevant local neuronal activity from the interactions of different transmitter systems. Such interactions of different systems in a complex and intricate prefrontal neuronal network endeavour to maintain the delicate balance for cognitive processes.
10

Plasticity of neuroanatomical relationships between cholinergic and dopaminergic axon varicosities and pyramidal cells in the rat medial prefrontal cortex

Zhang, Zi Wei ZW 09 1900 (has links)
No description available.

Page generated in 0.125 seconds