Spelling suggestions: "subject:"neuronial tinklas"" "subject:"elektroniniai tinklas""
11 |
Vaizdo atpažinimas dirbtiniais neuroniniais tinklais / Image recognition with artificial neural networksTamošiūnas, Darius 24 July 2014 (has links)
Darbe aprašoma tyrimas, kurio metu buvo sukurta programa, naudojantis OpenCV ir DNT klaidos skleidimo atgal algoritmu, gebanti aptikti ir bandanti klasifikuoti veidus. Darbo eigoje: • Įsigilinta į OpenCV funkcijų biblioteką; • Išanalizuota DNT teorinė medžiaga; • Sukurta programinė įranga, kuri, naudojantis „webcam“, geba aptikti ir bando klasifikuoti veidus; • Atliktas eksperimentinis tyrimas; • Nustatyti programos trūkumai; • Pateikti kiti sprendimo būdai; Realizuota programinė įranga gali būti naudojama edukaciniais tikslais. / The work describes an experiment,in which progress was created a software,by using OpenCV and ANN error back propagation algorithm capable of detecting and attempting to classify the faces. Workflow: • Delved deeply into the OpenCV library functions; • Analyzed the theoretical material of ANN • Developed the software, which, using webcam, is capable of detecting and trying to classify the faces; • Made an experimental study; • Determined the weaknesses of the program; • The other methods; created software can be used for educational purposes.
|
12 |
Autoasociatyvinių neuroninių tinklų taikymas vertybinių popierių kainų prognozei / Stock forecasting by applying associative neural networksSkirgaila, Aurimas 23 June 2014 (has links)
Darbe tiriamas autoasociatyvinių neuroninių tinklų (AANN) bei prinicipinių komponenčių (PCA) taikymas vertybinių popieriui klasterizavimui. Supažindinama su šių metodų veikimo principais, išryškinami AANN privalumai prieš PCA, apžvelgiamas dabartinis šių metodų panaudojimas akcijų klasterizavimui, kainų prognozėms, bei ateities perspektyvos. Eksperimentinio tyrimo metu sukuriama programinė įranga AANN klasterizavimui. Darbe nagrinėtų metodų pagalba suformuojami akcijų portfeliai ir stebimas jų vertės kitimas metų bėgyje. / SUMMARY This is a survey on the application of auto associative neural networks and principal component analysis in clustering stocks. Main principles of these two methods are presented, reviewing the current usage of AANN and PCA and future outlook. An experiment is being carried out by building two stock portfolios using PCA. The portfolios are being monitored within one year. The main goal of the survey is to estimate the abilities of application of auto-associative neural networks stock forecasting in the US stock market. In order to reach the goal, the following tasks have been set: • To analyze the probability of general market prediction; analyze fundamental and technical factors, select the most suitable ones for further investigation. • To consider different implementations of artificial neural networks, select the most suitable ones for stock market forecasting • To compare various stock forecasting software solutions based on neural networks or different intelligent systems. • According to the chosen methods and software, perform the historical stock data analysis, build investment portfolios. • To analyze the performance of portfolios on the time basis, compare the efficiency level of different methods applied. The US stock market has been selected as the most popular market with the highest efficiency of economical laws. A set of 8 fundamental keys has been selected for the further investigation. The PCA and the AANN have been selected to compare the efficiency... [to full text]
|
13 |
Atvirkštinio skleidimo neuroziniai tinklai : vaizdų atpažinimas / Backpropagation neural networks: pattern recognitionStudenikin, Oleg 28 May 2005 (has links)
In this Master’s degree work artificial neural networks and back propagation learning algorithm for human faces and pattern recognition are analyzed.
In the second part of work artificial neural networks and their architecture and structures models are analyzed. In the third part of article the backpropagation procedure and procedures theoretical learning principle are analyzed. In the fourth part different kinds of ANN methods and patterns extracting methods in recognition, learning and classification use were researched. In this part RGB method for patterns features extraction was described. In the fifth part the requirements specification, prototype model, use case diagram, system architecture, programs modules and objects project for software realization were created. In the same part backpropagation procedures running principle was realized. After the project part was completed, a face and patterns recognition system was created. In the sixth part the created software system was tested. According to the testing results software’s recognition rate is 82,5 % using supervised learning and 82,8 % using unsupervised learning. We found using the FAR and FRR rates the ERR rate, which was 40 %. While doing the testing with changed human characteristics, the system showed 84,6 % recognition rate. This rate shows very good work of the system by a little bit changed human characteristics. Systems realization was evaluated by users as very good one. In the seventh part software’s... [to full text]
|
14 |
Tiesioginio sklidimo neuroninių tinklų taikymo daugiamačiams duomenims vizualizuoti tyrimai / Research of multidimensional data visualization using feed-forward neural networksMedvedev, Viktor 04 February 2008 (has links)
Disertacijos tyrimų sritis yra daugiamačių duomenų analizė, bei tų duomenų suvokimo gerinimo būdai. Duomenų suvokimas yra sudėtingas uždavinys, ypač kai duomenys nurodo sudėtingą objektą, kuris aprašytas daugeliu parametrų. Disertacijoje nagrinėjami dirbtinių neuroninių tinklų algoritmai daugiamačiams duomenims vizualizuoti. Darbo tyrimų objektas yra dirbtiniai neuroniniai tinklai, skirti daugiamačių duomenų vizualizavimui. Su šiuo objektu yra betarpiškai susiję dalykai: daugiamačių duomenų vizualizavimas; dimensijos mažinimo algoritmai; projekcijos paklaidos; naujų taškų atvaizdavimas; vizualizavimui skirto neuroninio tinklo permokymo strategijos ir parametrų optimizavimas; lygiagretieji skaičiavimai. Pagrindinis disertacijos tikslas yra sukurti ir tobulinti metodus, kuriuos taikant būtų efektyviai minimizuojamos daugiamačių duomenų projekcijos paklaidos naudojantis dirbtiniais neuroniniais tinklais bei projekcijos algoritmais. Darbe atliktų tyrimų rezultatai atskleidė naujas medicininių (fiziologinių) duomenų analizės galimybes. / The research area of this work is the analysis of multidimensional data and the ways of improving apprehension of the data. Data apprehension is rather a complicated problem especially if the data refer to a complex object or phenomenon described by many parameters. The research object of the dissertation is artificial neural networks for multidimensional data projection. General topics that are related with this object: multidimensional data visualization; dimensionality reduction algorithms; errors of projecting data; the projection of the new data; strategies for retraining the neural network that visualizes multidimensional data; optimization of control parameters of the neural network for multidimensional data projection; parallel computing. The key aim of the work is to develop and improve methods how to efficiently minimize visualization errors of multidimensional data by using artificial neural networks. The results of the research are applied in solving some problems in practice. Human physiological data that describe the human functional state have been investigated.
|
15 |
Research of multidimensional data visualization using feed-forward neural networks / Tiesioginio sklidimo neuroninių tinklų taikymo daugiamačiams duomenims vizualizuoti tyrimaiMedvedev, Viktor 04 February 2008 (has links)
The research area of this work is the analysis of multidimensional data and the ways of improving apprehension of the data. Data apprehension is rather a complicated problem especially if the data refer to a complex object or phenomenon described by many parameters. The research object of the dissertation is artificial neural networks for multidimensional data projection. General topics that are related with this object: multidimensional data visualization; dimensionality reduction algorithms; errors of projecting data; the projection of the new data; strategies for retraining the neural network that visualizes multidimensional data; optimization of control parameters of the neural network for multidimensional data projection; parallel computing. The key aim of the work is to develop and improve methods how to efficiently minimize visualization errors of multidimensional data by using artificial neural networks. The results of the research are applied in solving some problems in practice. Human physiological data that describe the human functional state have been investigated. / Disertacijos tyrimų sritis yra daugiamačių duomenų analizė, bei tų duomenų suvokimo gerinimo būdai. Duomenų suvokimas yra sudėtingas uždavinys, ypač kai duomenys nurodo sudėtingą objektą, kuris aprašytas daugeliu parametrų. Disertacijoje nagrinėjami dirbtinių neuroninių tinklų algoritmai daugiamačiams duomenims vizualizuoti. Darbo tyrimų objektas yra dirbtiniai neuroniniai tinklai, skirti daugiamačių duomenų vizualizavimui. Su šiuo objektu yra betarpiškai susiję dalykai: daugiamačių duomenų vizualizavimas; dimensijos mažinimo algoritmai; projekcijos paklaidos; naujų taškų atvaizdavimas; vizualizavimui skirto neuroninio tinklo permokymo strategijos ir parametrų optimizavimas; lygiagretieji skaičiavimai. Pagrindinis disertacijos tikslas yra sukurti ir tobulinti metodus, kuriuos taikant būtų efektyviai minimizuojamos daugiamačių duomenų projekcijos paklaidos naudojantis dirbtiniais neuroniniais tinklais bei projekcijos algoritmais. Darbe atliktų tyrimų rezultatai atskleidė naujas medicininių (fiziologinių) duomenų analizės galimybes.
|
16 |
Genetinių algoritmų pritaikymo klasifikavimo uždaviniams spręsti tyrimas / Genetic Algorithms in Classification tasks solvingBalnys, Mantas 28 May 2004 (has links)
Neural networks are one of the most efficient classifier methods. One of such classifying neural networks we are trying to teach in this work by using genetic algorithms. In this work we test two types of genetic algorithms. One may be called parameterized genetic algorithm. It is built on the basic ideas of genetic algorithms. The other one is called parameter less genetic algorithm. It was presented by F. G. Lobo and D. E. Goldberg. Both genetic algorithms are tested and compared to the other well known optimization methods such as Bayes and Monte Carlo search. Experiments show the relevance of use genetic algorithms in teaching classifying neural network. Also stated that parameter less genetic algorithm works more efficient than parametric genetic algorithm in general cases. Created programs will be used in future studies.
|
17 |
Melizmų sintezė dirbtinių neuronų tinklais / Melisma synthesis using artificial neural networksLeonavičius, Romas January 2006 (has links)
Modern methods of speech synthesis are not suitable for restoration of song signals due to lack of vitality and intonation in the resulted sounds. The aim of presented work is to synthesize melismas met in Lithuanian folk songs, by applying Artificial Neural Networks. An analytical survey of rather a widespread literature is presented. First classification and comprehensive discussion of melismas are given. The theory of dynamic systems which will make the basis for studying melismas is presented and finally the relationship for modeling a melisma with nonlinear and dynamic systems is outlined. Investigation of the most widely used Linear Prediction Coding method and possibilities of its improvement. The modification of original Linear Prediction method based on dynamic LPC frame positioning is proposed. On its basis, the new melisma synthesis technique is presented.Developed flexible generalized melisma model, based on two Artificial Neural Networks – a Multilayer Perceptron and Adaline – as well as on two network training algorithms – Levenberg- Marquardt and the Least Squares error minimization – is presented. Moreover, original mathematical models of Fortis, Gruppett, Mordent and Trill are created, fit for synthesizing melismas, and their minimal sizes are proposed. The last chapter concerns experimental investigation, using over 500 melisma records, and corroborates application of the new mathematical models to melisma synthesis of one [ ...].
|
18 |
Informacinių technologijų rizikos valdymo sistema / Information technology risk management frameworkVirbalas, Linas 08 September 2009 (has links)
Šiuo darbu pristatoma sukurta sistema, kuria galima modeliuoti ir valdyti rizikas, kylančias iš IT, susijusias su IS nepasiekiamumu ar lėtu veikimu. Sistema realizuota pasitelkus neuroninius tinklus ir yra apmokoma sukaupta statistine informacija iš informacinių sistemų. Jai nurodoma, kurios statistinės informacijos laiko eilutes norima modeliuoti – t.y. kurios iš jų yra rizikos išraiška (serverių apkrovimas, IS atsakymo laikas ir pan.). Sistema pati nustato koreliuojančias statistines laiko eilutes, sugrupuoja susijusias ir kiekvienai grupei sukuria po modelį – apibendrina iki tol nežinomą priklausomybę tarp laiko eilučių pasitelkusi neuroninį tinklą. Kiekvienam iš tų modelių pateikus įtakojančių parametrų reikšmes, sistema sumodeliuoja rizikos parametro reikšmę. Eksperimentai parodė, jog sistema gali būti sėkmingai naudojama mišriame IT ūkyje ir geba modeliuoti įvairius IT bei IS komponentų parametrus, kurie sąlygoja rizikas. / By this work we present an IT risk management system, which is capable to model and manage risks that arise from IT wich are related with IS downtimes and slow response times. The system is implemented by using a proposed neural network architecture as a heart of the modeling engine. It is trained with accumulated datasets from existing information systems. The user shows for the system which statistical data time series one needs to model – i.e. the one which represents the risk (like server load, IS response time, etc.). The system automatically determines correlated statistical time series, groups them and creates a separate model for each group – this model generalizes until then unknown relationship between time series by invoking neural network. The model then accepts values of the input parameters and the system models the value of the risk parameter. Experiments have shown that the proposed system can be successfully used in a mixed IT environment and can be rewarding for one who tracks IT risks coming from various IT and IS components.
|
19 |
Investigation of Combinations of Vector Quantization Methods with Multidimensional Scaling / Vektorių kvantavimo metodų jungimo su daugiamatėmis skalėmis analizėMolytė, Alma 30 June 2011 (has links)
Often there is a need to establish and understand the structure of multidimensional data: their clusters, outliers, similarity and dissimilarity. One of solution ways is a dimensionality reduction and visualization of the data. If a huge datasets is analyzed, it is purposeful to reduce the number of the data items before visualization. The area of research is reduction of the number of the data analyzed and mapping the data in a plane.
In the dissertation, vector quantization methods, based on artificial neural networks, and visualization methods, based on a dimensionality reduction, have been investigated. The consecutive and integrated combinations of neural gas and multidimensional scaling have been proposed here as an alternative to combinations of self-organizing maps and multidimensional scaling. The visualization quality is estimated by König’s topology preservation measure, Spearman’s rho and MDS error. The measures allow us to evaluate the similarity preservation quantitatively after a transformation of multidimensional data into a lower dimension space. The ways of selecting the initial values of two-dimensional vectors in the consecutive combination and the first training block of the integrated combination have been proposed and the ways of assigning the initial values of two-dimensional vectors in all the training blocks, except the first one, of the integrated combination have been developed. The dependence of the quantization error on the values of training... [to full text] / Dažnai iškyla būtinybė nustatyti ir giliau pažinti daugiamačių duomenų struktūrą: susidariusius klasterius, itin išsiskiriančius objektus, objektų tarpusavio panašumą ir skirtingumą. Vienas iš sprendimų būdų – duomenų dimensijos mažinimas ir jų vizualizavimas. Kai analizuojamos didelės duomenų aibės, tikslinga prieš vizualizavimą sumažinti ne tik dimensiją, bet ir duomenų skaičių. Šio darbo tyrimų sritis yra daugiamačių duomenų skaičiaus mažinimas ir duomenų atvaizdavimas plokštumoje.
Disertacijoje nagrinėjami dirbtiniais neuroniniais tinklais grindžiami vektorių kvantavimo ir dimensijos mažinimu pagrįsti vizualizavimo metodai. Kaip alternatyva saviorganizuojančių neuroninių tinklų ir daugiamačių skalių junginiams, darbe pasiūlyti nuoseklus neuroninių dujų ir daugiamačių skalių junginys bei integruotas, atsižvelgiantis į neuroninių dujų metodo mokymosi eigą ir leidžiantis gauti tikslesnę daugiamačių vektorių projekciją plokštumoje. Junginiais gautų vaizdų kokybės vertinimui pasirinkti Konigo matas, Spirmano koeficientas bei MDS paklaida. Šie matai leidžia kiekybiškai įvertinti panašumų išlaikymą po daugiamačių duomenų transformavimo į mažesnės dimensijos erdvę. Taip pat pasiūlyti dvimačių vektorių pradinių koordinačių parinkimo būdai nuosekliame junginyje ir integruoto junginio pirmame mokymo bloke bei koordinačių reikšmių priskyrimo būdai integruoto junginio kituose mokymo blokuose. Eksperimentiškai nustatyta kvantavimo paklaidos priklausomybė nuo neuroninių dujų tinklo... [toliau žr. visą tekstą]
|
20 |
Vektorių kvantavimo metodų jungimo su daugiamatėmis skalėmis analizė / Investigation of Combinations of Vector Quantization Methods with Multidimensional ScalingMolytė, Alma 30 June 2011 (has links)
Dažnai iškyla būtinybė nustatyti ir giliau pažinti daugiamačių duomenų struktūrą: susidariusius klasterius, itin išsiskiriančius objektus, objektų tarpusavio panašumą ir skirtingumą. Vienas iš sprendimų būdų – duomenų dimensijos mažinimas ir jų vizualizavimas. Kai analizuojamos didelės duomenų aibės, tikslinga prieš vizualizavimą sumažinti ne tik dimensiją, bet ir duomenų skaičių. Šio darbo tyrimų sritis yra daugiamačių duomenų skaičiaus mažinimas ir duomenų atvaizdavimas plokštumoje.
Disertacijoje nagrinėjami dirbtiniais neuroniniais tinklais grindžiami vektorių kvantavimo ir dimensijos mažinimu pagrįsti vizualizavimo metodai. Kaip alternatyva saviorganizuojančių neuroninių tinklų ir daugiamačių skalių junginiams, darbe pasiūlyti nuoseklus neuroninių dujų ir daugiamačių skalių junginys bei integruotas, atsižvelgiantis į neuroninių dujų metodo mokymosi eigą ir leidžiantis gauti tikslesnę daugiamačių vektorių projekciją plokštumoje. Junginiais gautų vaizdų kokybės vertinimui pasirinkti Konigo matas, Spirmano koeficientas bei MDS paklaida. Šie matai leidžia kiekybiškai įvertinti panašumų išlaikymą po daugiamačių duomenų transformavimo į mažesnės dimensijos erdvę. Taip pat pasiūlyti dvimačių vektorių pradinių koordinačių parinkimo būdai nuosekliame junginyje ir integruoto junginio pirmame mokymo bloke bei koordinačių reikšmių priskyrimo būdai integruoto junginio kituose mokymo blokuose. Eksperimentiškai nustatyta kvantavimo paklaidos priklausomybė nuo neuroninių dujų tinklo... [toliau žr. visą tekstą] / Often there is a need to establish and understand the structure of multidimensional data: their clusters, outliers, similarity and dissimilarity. One of solution ways is a dimensionality reduction and visualization of the data. If a huge datasets is analyzed, it is purposeful to reduce the number of the data items before visualization. The area of research is reduction of the number of the data analyzed and mapping the data in a plane.
In the dissertation, vector quantization methods, based on artificial neural networks, and visualization methods, based on a dimensionality reduction, have been investigated. The consecutive and integrated combinations of neural gas and multidimensional scaling have been proposed here as an alternative to combinations of self-organizing maps and multidimensional scaling. The visualization quality is estimated by König’s topology preservation measure, Spearman’s rho and MDS error. The measures allow us to evaluate the similarity preservation quantitatively after a transformation of multidimensional data into a lower dimension space. The ways of selecting the initial values of two-dimensional vectors in the consecutive combination and the first training block of the integrated combination have been proposed and the ways of assigning the initial values of two-dimensional vectors in all the training blocks, except the first one, of the integrated combination have been developed. The dependence of the quantization error on the values of training... [to full text]
|
Page generated in 0.0738 seconds