• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 951
  • 322
  • 105
  • 77
  • 32
  • 18
  • 17
  • 17
  • 17
  • 17
  • 17
  • 17
  • 14
  • 13
  • 8
  • Tagged with
  • 1824
  • 344
  • 304
  • 293
  • 265
  • 219
  • 180
  • 173
  • 158
  • 155
  • 150
  • 131
  • 131
  • 128
  • 113
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

Modelling Alzheimer's disease with human pluripotent stem cell-derived cerebral cortical neurons

Shi, Yichen January 2013 (has links)
No description available.
502

Functional regulation of opioid receptor signaling

Tumati, Suneeta January 2009 (has links)
Studies have shown that long-term opioid agonist (such as morphine) treatment produces antinociceptive tolerance and increased pain sensitivity (hyperalgesia and/or allodynia), limiting the clinical efficacy of morphine. Prolonged opiate administration also upregulates spinal pain neurotransmitter (such as calcitonin gene-related peptide (CGRP)) levels and enhances evoked CGRP release in the dorsal horn of rats. It was suggested that augmented spinal pain neurotransmission may contribute to paradoxical pain sensitization and antinociceptive tolerance. The cellular signal transduction pathways involved in sustained opioid mediated augmentation of spinal pain neurotransmitter are not fully clarified.Sustained morphine treatment was shown to augment the concentrations of inflammatory mediators, such as PGE2 in the spinal cord. Studies have shown that PGE2 stimulates cAMP formation and CGRP release by activation of Gs protein-coupled prostaglandin receptor types in primary sensory neurons. Interestingly, it was found earlier that sustained opioid agonist treatment leads to a Raf-1-dependent sensitization of adenylyl cyclase(s) (AC superactivation), augmenting forskolin-stimulated cAMP formation upon opioid withdrawal (cAMP overshoot). It is well demonstrated that cAMP activates cAMP-dependent protein kinase (PKA), which plays an important role in the modulation of presynaptic neurotransmitter release. Therefore, in this study, we investigate the physiological role of Raf-1 mediated AC superactivation and subsequent PKA activation in A. sustained morphine-mediated augmentation of basal or evoked pain neurotransmitter release in vitro, in cultured primary sensory neurons, and B. in vivo, in sustained morphine mediated paradoxical pain sensitization and antinociceptive tolerance in rats.Our data demonstrates that A. sustained morphine treatment augments both basal and capsaicin-evoked CGRP release from isolated primary sensory neurons in a PKA- and Raf-1- dependent manner. B. sustained morphine treatment- augments of PGE2-evoked CGRP release from these cells. C. selective knockdown of spinal PKA or Raf-1 protein levels by intrathecal PKA- or Raf-1-specific siRNA pretreatment completely attenuates sustained morphine-mediated thermal hyperalgesia, tactile allodynia and greatly reduces antinociceptive tolerance in rats.In conclusion, we suggest that Raf-1-mediated AC superactivation may have a crucial trigger role in sustained morphine-mediated compensatory adaptations in the nervous system. Thus, we expect that pharmacological attenuation of Raf-1-mediated AC superactivation may improve the clinical treatment of chronic and neuropathic pain.
503

Molecular correlates of spinal motor neuron functional specification and plasticity

Cherukuri, Pitchaiah 18 October 2012 (has links)
No description available.
504

Infrared Laser Stimulation of Cerebral Cortex Cells - Aspects of Heating and Cellular Responses

Liljemalm, Rickard January 2013 (has links)
The research of functional stimulation of neural tissue is of great interest within the field of clinical neuroscience to further develop new neural prosthetics. A technique which has gained increased interest during the last couple of years is the stimulation of nervous tissue using infrared laser light. Successful results have been reported, such as stimulation of cells in both the central nervous system, and in the peripheral nervous system, and even cardiomyocytes. So far, the details about the stimulation mechanism have been a question of debate as the mechanism is somewhat hard to explain. The mechanism is believed to have a photo-thermal origin, where the light from the laser is absorbed by water, thus increasing the temperature inside and around the target cell. Despite the mechanism questions, the technique holds several promising features compared to traditional electrical stimulation. Examples of advantages are that it is contact free, no penetration is needed, it has high spatial resolution and no toxic electrochemical byproducts are produced during stimulation. However, since the laser pulses locally increase the temperature of the tissue, there is a risk of heat induced damage. Therefore, the effect of increased temperatures must be investigated thoroughly. One method of examining the changes in temperature during stimulation is to model the heating. This thesis is based on the work from four papers with the main aim to investigate and describe the response of heating, caused by laser pulses, on central nervous system cells. In paper one, a model of the heating during pulsed laser stimulation is established and used to describe the dynamic temperature changes occurring during functional stimulation of cerebral cortex cells. The model was used in all four papers. Furthermore, single cell responses, as action potentials, as well as network responses, as activity inhibition, were observed. In paper two, the response of rat astrocytes exposed to laser induced hyperthermia was investigated. Cellular migration was observed and the migration limit was used to calculate the kinetic parameters for the cells, i.e., the reaction activation energy, Ea (321.4 kJ⋅mol-1), and the frequency factor, Ac (9.47 x 1048 s-1). Furthermore, a damage signal ratio (DSR) for calculating a threshold for cellular damage was defined, and calculated to six percent. In paper three, the response of hyperthermia to cerebral cortex cells was investigated, in the same way as in the second paper. Fluorescence staining of the metabolic activity was used to reveal the heat response, and by using the limit of the observed increased fluorescence the kinetic parameters, Ea (333.6 kJ⋅mol-1), and Ac (9.76 x 1050 s-1), were calculated. The DSR for the cells was calculated to five percent. In paper four, the behavior of action potentials triggered by laser stimulation was investigated. More specifically, the time delay from the start of a laser pulse to the detection of an action potential, delta-t, were investigated. Two different behaviors for the initial action potentials were observed: fast decreasing delta-t and slow decreasing delta-t. The results show the dynamic behavior of action potential responses to infrared light. The work of this thesis show the dynamic changes of the temperature during optical stimulation, using an infrared laser working at 1,550 nanometers. It also shows how the changes cause astrocytes to migrate for pulses several seconds long, and neurons to fire action potentials for pulses in the millisecond range. Furthermore, a damage signal ratio was defined and calculated for the cell systems.
505

Synaptogenesis between identified neurons

Ching, Shim January 1995 (has links)
Serotonergic Retzius (R) neurons of the leech Hirudo medicinalis in culture reform inhibitory synapses with pressure sensitive (P) neurons while selectively reducing an extrasynaptic, depolarizing response to serotonin (5-HT) in the P neuron. We have examined if the selection of 5-HT responses is restricted to sites of contact between processes and growth cones of these cells. As measured by intracellular recording at the soma, focal application of 5-HT depolarized uncontacted P cell bodies, neurites and growth cones but not processes contacted by R cells. In patch clamp recordings of the depolarizing channels, application of 5-HT modulated channel activity in uncontacted but not in contacted growth cones. The selection of transmitter responses during synaptogenesis is therefore localized to discrete sites of contact specifically between synaptic partners. / Prior experiments have shown that tyrosine kinases play a crucial part in the selection of responses to 5-HT that occurs in the P cell (Catarsi and Drapeau, 1993). To further examine the mechanism responsible for this change in transmitter responses, we have utilized a monoclonal antibody against phosphotyrosine to determine if tyrosine phosphorylation could be detected in P and R cell pairs placed in contact. Our results revealed bright, punctate cytoplasmic staining in P cells paired with R cells. / Embryonic leeches were used to examine how R to P synaptogenesis proceeds in vivo. By filling the R and P neurons with different fluorescent dyes (Lucifer Yellow and Rhodamine-Dextran), confocal microscopy established that putative contact between neuropilar processes were made as early as 11 days of development. Spontaneous, chloride-dependent synaptic potentials in embryonic P cells similar to those seen in adult P cells were observed as early as day 10 of development.
506

Morphology and synapse distribution of olfactory interneurons in the procerebrum of the terrestrial snail Helix aspersa

Ratté, Stéphanie. January 1999 (has links)
The procerebrum of terrestrial molluscs is an important processing centre for olfaction. While the physiology of the procerebrum is relatively well characterized, the procerebrum's structure and organization has not been previously investigated in detail. The goal of this thesis is to better characterize the structural organization of the procerebrum and to understand how it compares with other olfactory systems. / The morphology of the procerebral neurons in the snail Helix aspersa was investigated through intracellular injections of biocytin. The population of cells is heterogeneous, but no formal categorization of neuronal types was possible. The main difference among cells lies in the placement of the cells' neurites. Furthermore, contradicting previous results, certain neurons were found to have neurite projections outside the procerebrum, travelling as far as the contralateral cerebral ganglion. / To investigate if differences in sites of arborization represent functional differences, the distribution of synaptic contacts on labelled cells was studied using serial sections and electron microscopy. Neurons with different sites of arborization have distinct patterns of synapse distribution. Cells with arborizations in the procerebrum but not in the internal mass have large varicosities specialized for output. Cells that arborize in the internal mass or outside the procerebrum have mostly input synapses proximal to the soma and mostly output synapses in the terminal region of the neurites. These latter cells appear to transmit information from the procerebral cell body mass to other brain regions. The implications of these data are, firstly, that the procerebrum directly distributes processed information throughout the nervous system. Secondly, the procerebral neuron population may be divisible into two subgroups: intrinsically arborizing interneurons and projection neurons. / These results suggest a novel mechanism by which compartmentalization could be achieved in the procerebrum. Compartmentalization is believed to be important for processing olfactory information, is present in most olfactory centres but has not previously been described in the molluscan olfactory system. I propose that varicosities on the local interneurons generate foci of activity in the procerebrum which, in turn, activate specific subsets of output neurons, similar to what happens in other olfactory systems.
507

Morphology and development of mesocerebrum neurons in Helix aspersa maxima

Laberge, Shelley January 1991 (has links)
The neurons in the mesocerebrum of the right cerebral ganglion control the sexual behaviour of Helix aspersa maxima. The purpose of the present study was to examine the relationship between reproductive development and the development of these neurons. The growth of right mesocerebrum neurons was quantified by filling cells with hexamminecobalt chloride at different ages. The neurite growth phase preceded that of the penis by about four weeks. Total neurite length was linearly correlated with soma diameter as measured in wholemounts. Diameter measurements from sectioned material showed that postembryonic growth in three CNS populations was expressed as increases in soma diameters but not in neuron numbers. The growth rate of right mesocerebrum cells between 5-20 weeks of age was significantly greater than that of the other two populations. Right mesocerebrum development was unaffected by male reproductive tissue ablation. this study shows that growth and development of the right mesocerebrum neurons of H. aspersa maxima occurs relatively late, but is complete prior to the initiation of reproductive behaviour.
508

The neural progenitor to neuron transition : role and regulation of GrouchoTLE proteins

Buscarlet, Manuel. January 2008 (has links)
Groucho/transducin-like Enhancer of split (Gro/TLE) family proteins are corepressors found as part of multiple transcriptional complexes that play significant roles during many developmental processes, including neurogenesis. This thesis sought to characterize the molecular mechanisms underlying the biological activity of Gro/TLE1. More specifically, the aim was to clarify the contribution of different transcriptional cofactors, as well as phosphorylation events induced by cofactor binding, to Gro/TLE1 ability to inhibit neuronal differentiation from proliferating neural progenitor cells. / By characterizing specific point mutations within the C-terminal domain of Gro/TLE1, we were able to selectively impair binding of Gro/TLE1 to different classes of DNA-binding proteins and then assess the effect of those mutations on Gro/TLE1 anti-neurogenic function. These studies showed that the inhibition of cerebral cortex (cortical) neuron differentiation by Gro/TLE1 requires interaction with transcription factors that use short tetrapeptide sequences, WRP(W/Y), to recruit Gro/TLE1. In contrast, interactions with proteins that either interact with the C-terminal domain of Gro/TLE1 using a different type of binding sequence, termed engrailed homology 1 (Eh1) motif, or bind to the N-terminal part of the protein, are not required for Gro/TLE1 anti-neurogenic function. / Using a similar strategy based on mutation analysis, we characterized point mutations that block the hyperphosphorylation of Gro/TLE1 induced by transcription cofactor binding ("cofactor-activated phosphorylation") without impairing cofactor binding and transcriptional corepression ability. These mutations map at phosphorylatable serine residues, Ser-286, Ser-289, and Ser298. Mutation of those residues to alanine blocks/reduces both cofactor-activated phosphorylation and anti-neurogenic activity of Gro/TLE1, demonstrating that cofactor-activated phosphorylation is required for that function. Tandem mass spectroscopy analysis showed further that Ser-286 is phosphorylated. Taken together, these findings characterize the role of cofactor-activated phosphorylation and identify residues important for this mechanism. / Our studies also showed that homeodomain-interacting protein kinase 2 (HIPK2) mediates phosphorylation of Gro/TLE1 when the latter is complexed with transcriptional partners of the WRP(W/Y) motif family. However, HIPK2 is not involved in Gro/TLE1 cofactor-activated phosphorylation. Rather, HIPK2--mediated phosphorylation is antagonistic to the latter and decreases the ability of Gro/TLE1 to interact and repress transcription with WRP(W/Y) motif proteins. / Taken together, these results improve significantly our understanding of the mechanisms underlying the anti-neurogenic function of Gro/TLE1. This information provides new insight into the regulation of mammalian neuronal development and, possibly, other developmental processes controlled by Gro/TLE proteins.
509

Effects of PARP-1 signaling and conjugated linoleic acid on brain cell bioenergetics and survival

Hunt, Waylon T. 01 October 2010 (has links)
Glutamate is the primary excitatory neurotransmitter in the central nervous system. Extracellular glutamate concentrations are tightly regulated to avoid over-stimulation of glutamate receptors, which leads to a cascade of deleterious processes collectively known as excitotoxicity. Excitotoxicity is common to several neurodegenerative disorders and CNS injuries, including stroke and Alzheimer’s disease (AD). The projects described in this thesis were designed to uncover novel protective pathways in excitotoxic neurodegeneration. Excessive activation of the DNA repair enzyme, poly(ADP-ribose) polymerase-1 (PARP-1), is a convergence point for neuron death signaling in excitotoxic pathways. In AD, the peptide amyloid-β1-42 (Aβ1-42) is aberrantly produced, leading to excitotoxic neuron death in vitro. To investigate links between Aβ1-42 and PARP, we treated cultured cortical neurons with Aβ1-42 and determined whether PARP-1 contributes to neuron death. Increased neuron death was observed after Aβ1-42 exposure. A non-selective PARP-1/2 inhibitor significantly reduced Aβ1-42-induced death while elimination of PARP-1 alone was not neuroprotective. This suggests that PARP-2 or combined effects of PARP-1 and PARP-2 are required for Aβ1-42-induced neuron death. A hallmark of PARP over-activation is depletion of intracellular NAD+ and ATP levels, yet nearly all studies examining adenine nucleotide levels use separate biochemical samples to measure nucleotides individually. We developed two HPLC methods for simultaneous separation of NAD+, ATP, ADP and AMP. We determined that PARP-1 activation in astrocytes leads to near complete NAD+ depletion, followed by partial loss of ATP pools and total adenine nucleotide pools. Finally, we hypothesized that conjugated linoleic acid (CLA), a naturally occurring polyunsaturated fatty acid, is capable of enhancing neuron survival after an excitotoxic insult. Cultured cortical neurons were exposed to glutamate in the presence and absence of CLA. CLA levels likely achievable in human plasma and brain tissue during dietary supplementation regimens, protected neurons against glutamate excitotoxicity when given during or up to five hours after glutamate exposure. Several markers of mitochondrial damage and intrinsic apoptosis were examined. CLA stabilized mitochondrial membrane potential and permeability, shedding light on the mechanism of CLA neuroprotection. Overall, our research suggests a role for PARP in Aβ1-42 toxicity and identifies a novel role for CLA in neuroprotection following excitotoxicity.
510

Distribution of APGWamide-like and FMRFamide-like immunoreactive neurons innervating the penis and the dart sac in the mesocerebrum of the snail Helix Aspersa

Li, Guoyi, 1962- January 1994 (has links)
The distribution of APGWamide-like and FMRFamide-like immunoreactive neurons involved in the mating behaviour of the terrestrial snail Helix aspersa have been investigated in the mesocerebrum by retrograde and anterograde labelling and immunostaining techniques. Retrograde labelling shows that 25-40 mesocerebral neurons have an axon in the penis nerve and a similar number of neurons have an axon in the nervus cutaneus pedalis primus dexter (NCPD). It was found that the mesocerebral neurons also project to the nervus cutaneus pedalis secundus dexter (NCSD), the medial lip nerves, the posterior lip nerve, the peritentacular nerve, and the pedal ganglion. Some mesocerebral neurons have multiple projections. Quantitative analysis using confocal laser scanning microscopy indicates that approximately half of the mesocerebral neurons projecting to the penis nerve contain APGWamide-like peptide and half of the mesocerebral neurons projecting to the NCPD contain FMRFamide-like peptide. Some mesocerebral neurons have both peptides. These results are generally in agreement with the hypothesis that the neurons projecting to the penis nerve contain APGWamide, while those projecting to the NCPD contain FMRFamide.

Page generated in 0.0524 seconds