• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 260
  • 140
  • 74
  • 27
  • 26
  • 15
  • 10
  • 9
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 654
  • 196
  • 104
  • 65
  • 64
  • 58
  • 52
  • 52
  • 48
  • 48
  • 47
  • 46
  • 46
  • 44
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Prédiction de trajectoires d'objets immergés par couplage entre modèles d'écoulement et équations d'Euler-Newton

Floc'H, France 01 June 2011 (has links) (PDF)
Des instabilités numériques dues à l'inertie du fluide apparaissent lorsque l'on résout les équations du mouvement pour un solide immergé dans un fluide dense tel que l'eau. Dans cette thèse, un schéma numérique stable dans ce cas est proposé. Les simulations tridimensionnelles de mouvements libres d'un objet couplé avec les équations résolvant l'écoulement utilisent trop de ressources informatiques pour étudier un grand nombre de cas. Il fut donc décidé de concevoir et de construire une veine hydrodynamique 2D pour valider le code numérique. Un dispositif en fluide statique est premièrement mis en place pour vérifier la faisabilité de trajectoires 2D correctes. L'aspect chaotique de certaines trajectoires est mis en évidence. Ce comportement est dû aux fortes instabilités du sillage. On observe dans la veine hydrodynamique que l'écoulement stabilise les translations, qui sont correctement prédites. La rotation est, quant à elle, toujours soumises aux instabilités du sillage. D'autant plus que l'objet utilisé est un rectangle qui, de par ses arêtes vives, présente des décollements de sa couche limite au cours de sa trajectoire. Ceci implique de fortes instabilités empêchant une prédiction correcte de l'angle au cours des essais. Cette méthode est également utilisée pour simuler la propulsion biomimétique grâce à un aileron oscillant. Le code hydrodynamique est alors un code potentiel utilisant la méthode des éléments frontières. Afin de comprendre l'influence des différents paramètres sur les performances du mouvement, tous les degrés de liberté sont fixés. Nos résultats pour le coefficient de poussée sont en accord avec la théorie de Theodorsen. L'étude paramétrique confirme que le nombre de Strouhal joue le même rôle pour l'aileron oscillant que le paramètre d'avance joue pour l'hélice. Les rendements propulsifs obtenus pour ces deux moyens de propulsion sont comparables. Une procédure de comparaison générale entre les moyens de propulsion est développée. Cependant, lorsqu'un changement de rythme est nécessaire, une hélice à pas variable donne une meilleure efficacité qu'un aileron changeant d'amplitude de tangage, même si l'amplitude de tangage a le même effet que le pas. Les résultats en mouvements libres mettent en évidence la rapidité du couplage et sa robustesse.
402

Ray Tracing Bézier Surfaces on GPU

Löw, Joakim January 2006 (has links)
<p>In this report, we show how to implement direct ray tracing of B´ezier surfaces on graphics processing units (GPUs), in particular bicubic rectangular Bézier surfaces and nonparametric cubic Bézier triangles. We use Newton’s method for the rectangular case and show how to use this method to find the ray-surface intersection. For Newton’s method to work we must build a spatial partitioning hierarchy around each surface patch, and in general, hierarchies are essential to speed up the process of ray tracing. We have chosen to use bounding box hierarchies and show how to implement stackless traversal of such a structure on a GPU. For the nonparametric triangular case, we show how to find the wanted intersection by simply solving a cubic polynomial. Because of the limited precision of current GPUs, we also propose a numerical approach to solve the problem, using a one-dimensional Newton search.</p>
403

Computation of Thermal Development in Injection Mould Filling, based on the Distance Model

Andersson, Per-Åke January 2002 (has links)
<p>The heat transfer in the filling phase of injection moulding is studied, based on Gunnar Aronsson’s distance model for flow expansion ([Aronsson], 1996).</p><p>The choice of a thermoplastic materials model is motivated by general physical properties, admitting temperature and pressure dependence. Two-phase, per-phase-incompressible, power-law fluids are considered. The shear rate expression takes into account pseudo-radial flow from a point inlet.</p><p>Instead of using a finite element (FEM) solver for the momentum equations a general analytical viscosity expression is used, adjusted to current axial temperature profiles and yielding expressions for axial velocity profile, pressure distribution, frozen layer expansion and special front convection.</p><p>The nonlinear energy partial differential equation is transformed into its conservative form, expressed by the internal energy, and is solved differently in the regions of streaming and stagnant flow, respectively. A finite difference (FD) scheme is chosen using control volume discretization to keep truncation errors small in the presence of non-uniform axial node spacing. Time and pseudo-radial marching is used. A local system of nonlinear FD equations is solved. In an outer iterative procedure the position of the boundary between the “solid” and “liquid” fluid cavity parts is determined. The uniqueness of the solution is claimed. In an inner iterative procedure the axial node temperatures are found. For all physically realistic material properties the convergence is proved. In particular the assumptions needed for the Newton-Mysovskii theorem are secured. The metal mould PDE is locally solved by a series expansion. For particular material properties the same technique can be applied to the “solid” fluid.</p><p>In the circular plate application, comparisons with the commercial FEM-FD program Moldflow (Mfl) are made, on two Mfl-database materials, for which model parameters are estimated/adjusted. The resulting time evolutions of pressures and temperatures are analysed, as well as the radial and axial profiles of temperature and frozen layer. The greatest differences occur at the flow front, where Mfl neglects axial heat convection. The effects of using more and more complex material models are also investigated. Our method performance is reported.</p><p>In the polygonal star-shaped plate application a geometric cavity model is developed. Comparison runs with the commercial FEM-FD program Cadmould (Cmd) are performed, on two Cmd-database materials, in an equilateral triangular mould cavity, and materials model parameters are estimated/adjusted. The resulting average temperatures at the end of filling are compared, on rays of different angular deviation from the closest corner ray and on different concentric circles, using angular and axial (cavity-halves) symmetry. The greatest differences occur in narrow flow sectors, fatal for our 2D model for a material with non-realistic viscosity model. We present some colour plots, e.g. for the residence time.</p><p>The classical square-root increase by time of the frozen layer is used for extrapolation. It may also be part of the front model in the initial collision with the cold metal mould. An extension of the model is found which describes the radial profile of the frozen layer in the circular plate application accurately also close to the inlet.</p><p>The well-posedness of the corresponding linearized problem is studied, as well as the stability of the linearized FD-scheme.</p> / Report code: LiU-TEK-LIC-2002:66.
404

An Essay on Thomas Reid´s Philosophy of Science

Callergård, Robert January 2006 (has links)
Though generally recognized as a formative force in his philosophy, Thomas Reid’s Newtonianism and his philosophy of science has not received due attention among scholars. My aim is to inaugurate a detailed survey. In ch. 1 it is shown that Reid demarcates physics as against metaphysics and theology, making his brand of Newtonianism different from first generation moral and religious Newtonianism. In ch. 2 it is argued that "Newtonian" is not an apt label on Reid’s call for a Science of the human mind. Neither his practice within the field, nor his methodological views, make lawlike connections the central kind of truth to be discovered. Ch. 3 is devoted to Reid’s account of the 1st and 2nd of Newton’s Regulae Philosophandi, and an ensuing notion of explanation which approaches the deductive-nomological model. It is shown that Reid’s account is very much his own, though presented as an explication of Newton’s intentions. Reid’s dismissive view towards simplicity as a guide in scientific reasoning leans on Bacon’s theory of idols and Reid’s theory of first principles of common sense. Ch 4 concerns hypotheses in connection with Newton’s phrase Hypotheses non fingo. It is argued that Reid does not mind speculation about unobservable or theoretical entities, and that his objections to particular ether theories are scientific rather than principled. Nonetheless, since Reid does not explain the difference between powerful conjecture and established truth, his notion of scientific reasoning remains elusive. Ch 5 concerns Reid’s views on the concept and ontology of forces of attraction. It is argued that Reid takes forces to be physical entities open for empirical enquiry, and that forces are neither active, nor efficient. Finally, Reid’s view of metaphysics is considered, and further differences with early Newtonians emphasised.
405

Ray Tracing Bézier Surfaces on GPU

Löw, Joakim January 2006 (has links)
In this report, we show how to implement direct ray tracing of B´ezier surfaces on graphics processing units (GPUs), in particular bicubic rectangular Bézier surfaces and nonparametric cubic Bézier triangles. We use Newton’s method for the rectangular case and show how to use this method to find the ray-surface intersection. For Newton’s method to work we must build a spatial partitioning hierarchy around each surface patch, and in general, hierarchies are essential to speed up the process of ray tracing. We have chosen to use bounding box hierarchies and show how to implement stackless traversal of such a structure on a GPU. For the nonparametric triangular case, we show how to find the wanted intersection by simply solving a cubic polynomial. Because of the limited precision of current GPUs, we also propose a numerical approach to solve the problem, using a one-dimensional Newton search.
406

Nonlinear Analysis Of Reinforced Concrete Frame Structures

Ciftci, Guclu Koray 01 February 2013 (has links) (PDF)
Reinforced concrete frames display nonlinear behavior both due to its composite nature and the material properties of concrete itself. The yielding of the reinforcement, the non-uniform distribution of aggregates and the development of cracks under loading are the main reasons of nonlinearity. The stiffness of a frame element depends on the combination of the modulus of elasticity and the geometric properties of its section - area and the moment of inertia. In practice, the elastic modulus is assumed to be constant throughout the element and the sectional properties are assumed to remain constant under loading. In this study, it is assumed that the material elasticity depends on the reinforcement ratio and its distribution over the section. Also, the cracks developing in the frame element reduces the sectional properties. In case of linear analysis, the material and sectional parameters are assumed to be constant. In practice, the modulus of elasticity E is a predefined value based on previous experiments and the moment of inertia I is assumed to be constant throughout the analysis. However, in this study, E and I are assumed to be combined. In other words, they cannot be separated from each other throughout the analysis. These two parameters are handled as a single parameter as EI . This parameter is controlled by the reinforcement ratio and its configuration, sectional properties and deformation of the member. Two types of analysis, namely a sectional and a finite element analyses, are used in this study. From the sectional analysis, the parameter EI is calculated based on the sectional geometry, material properties and the axial load applied on the section. The parameter EI is then used in the finite element analysis to calculate the sectional forces and the nodal displacements. For the nonlinear analysis, the Newton-Raphson iterative approach is followed until convergence is obtained.
407

Random Variate Generation by Numerical Inversion when only the Density Is Known

Derflinger, Gerhard, Hörmann, Wolfgang, Leydold, Josef January 2008 (has links) (PDF)
We present a numerical inversion method for generating random variates from continuous distributions when only the density function is given. The algorithm is based on polynomial interpolation of the inverse CDF and Gauss-Lobatto integration. The user can select the required precision which may be close to machine precision for smooth, bounded densities; the necessary tables have moderate size. Our computational experiments with the classical standard distributions (normal, beta, gamma, t-distributions) and with the noncentral chi-square, hyperbolic, generalized hyperbolic and stable distributions showed that our algorithm always reaches the required precision. The setup time is moderate and the marginal execution time is very fast and the same for all distributions. Thus for the case that large samples with fixed parameters are required the proposed algorithm is the fastest inversion method known. Speed-up factors up to 1000 are obtained when compared to inversion algorithms developed for the specific distributions. This makes our algorithm especially attractive for the simulation of copulas and for quasi-Monte Carlo applications. (author´s abstract) / Series: Research Report Series / Department of Statistics and Mathematics
408

Sensitivity Analysis Using Finite Difference And Analytical Jacobians

Ezertas, Ahmet Alper 01 September 2009 (has links) (PDF)
The Flux Jacobian matrices, the elements of which are the derivatives of the flux vectors with respect to the flow variables, are needed to be evaluated in implicit flow solutions and in analytical sensitivity analyzing methods. The main motivation behind this thesis study is to explore the accuracy of the numerically evaluated flux Jacobian matrices and the effects of the errors in those matrices on the convergence of the flow solver, on the accuracy of the sensitivities and on the performance of the design optimization cycle. To perform these objectives a flow solver, which uses exact Newton&rsquo / s method with direct sparse matrix solution technique, is developed for the Euler flow equations. Flux Jacobian is evaluated both numerically and analytically for different upwind flux discretization schemes with second order MUSCL face interpolation. Numerical flux Jacobian matrices that are derived with wide range of finite difference perturbation magnitudes were compared with analytically derived ones and the optimum perturbation magnitude, which minimizes the error in the numerical evaluation, is searched. The factors that impede the accuracy are analyzed and a simple formulation for optimum perturbation magnitude is derived. The sensitivity derivatives are evaluated by direct-differentiation method with discrete approach. The reuse of the LU factors of the flux Jacobian that are evaluated in the flow solution enabled efficient sensitivity analysis. The sensitivities calculated by the analytical Jacobian are compared with the ones that are calculated by numerically evaluated Jacobian matrices. Both internal and external flow problems with varying flow speeds, varying grid types and sizes are solved with different discretization schemes. In these problems, when the optimum perturbation magnitude is used for numerical Jacobian evaluation, the errors in Jacobian matrix and the sensitivities are minimized. Finally, the effect of the accuracy of the sensitivities on the design optimization cycle is analyzed for an inverse airfoil design performed with least squares minimization.
409

A Semismooth Newton Method For Generalized Semi-infinite Programming Problems

Tezel Ozturan, Aysun 01 July 2010 (has links) (PDF)
Semi-infinite programming problems is a class of optimization problems in finite dimensional variables which are subject to infinitely many inequality constraints. If the infinite index of inequality constraints depends on the decision variable, then the problem is called generalized semi-infinite programming problem (GSIP). If the infinite index set is fixed, then the problem is called standard semi-infinite programming problem (SIP). In this thesis, convergence of a semismooth Newton method for generalized semi-infinite programming problems with convex lower level problems is investigated. In this method, using nonlinear complementarity problem functions the upper and lower level Karush-Kuhn-Tucker conditions of the optimization problem are reformulated as a semismooth system of equations. A possible violation of strict complementary slackness causes nonsmoothness. In this study, we show that the standard regularity condition for convergence of the semismooth Newton method is satisfied under natural assumptions for semi-infinite programs. In fact, under the Reduction Ansatz in the lower level problem and strong stability in the reduced upper level problem this regularity condition is satisfied. In particular, we do not have to assume strict complementary slackness in the upper level. Furthermore, in this thesis we neither assume strict complementary slackness in the upper nor in the lower level. In the case of violation of strict complementary slackness in the lower level, the auxiliary functions of the locally reduced problem are not necessarily twice continuously differentiable. But still, we can show that a standard regularity condition for quadratic convergence of the semismooth Newton method holds under a natural assumption for semi-infinite programs. Numerical examples from, among others, design centering and robust optimization illustrate the performance of the method.
410

An evaluation of transfer capability limitations and solutions for South Mississippi Electric Power Association

Brown, Nathan L. January 2002 (has links)
Thesis (M.S.)--Mississippi State University. Department of Electrical and Computer Engineering. / Title from title screen. Includes bibliographical references.

Page generated in 0.033 seconds