Spelling suggestions: "subject:"commutative bioreometrie"" "subject:"commutative corneometrie""
11 |
Kovariante Differentialrechnung auf Quantensphären ungerader Dimension. Ein Beitrag zur nichtkommutativen Geometrie homogener QuantenräumeWelk, Martin 28 November 2004 (has links)
Quantengruppen, Quantenräume zu Quantengruppen und speziell homogene Quantenräume zu Quantengruppen sind wichtige Beispiele nichtkommutativer geometrischer Räume. In dieser Arbeit werden die Quantensphären ungerader Dimension S_q^{2N-1} nach Vaksman und Soibelman als eine Klasse homogener Quantenräume untersucht. Ziel der Arbeit ist es, auf ihnen eine kovariante Differentialrechnung bereitzustellen und damit die Voraussetzungen für die Untersuchung ihrer nichtkommutativen Geometrie zu schaffen. Auf den Quantensphären S_q^{2N-1} werden für N>=4 unter zwei verschiedenen Setzungen der Nebenbedingungen kovariante Differentialkalküle erster Ordnung klassifiziert. Es wird gezeigt, daß für N>=4 genau vier Familien kovarianter *-Differentialkalküle erster Ordnung mit je zwei Parametern auf S_q^{2N-1} existieren, deren 1-Formen-Bimoduln von den Differentialen dz_i, dz^*_i, 1<=i<=N, der 2N algebraischen Erzeugenden der Quantensphäre als freie Linksmoduln erzeugt werden. Keiner dieser Differentialkalküle ist ein innerer Kalkül. Ferner wird gezeigt, daß für N>=4 genau fünf Familien kovarianter Differentialkalküle erster Ordnung mit je einem Parameter auf S_q^{2N-1} existieren, deren 1-Formen-Bimoduln von dz_i, dz^*_i, 1<=i<=N, als Linksmoduln erzeugt werden und für die alle Relationen im S_q^{2N-1}-Linksmodul der 1-Formen von genau einer Relation zwischen invarianten 1-Formen algebraisch erzeugt werden. Die Differentialkalküle dreier dieser Familien sind *-Kalküle, diejenigen einer davon innere Kalküle. Alle diese Kalküle existieren auch für N=2 und N=3. Für einen der inneren Differentialkalküle erster Ordnung \Gamma wird gezeigt, daß in jedem Differentialkalkül höherer Ordnung \Gamma^\wedge, der \Gamma fortsetzt, alle Differentialformen der Ordnung 2N+1 und höherer Ordnung verschwinden. Für \Gamma wird ein Symmetriehomomorphismus (braiding) konstruiert. Mit Hilfe des Differentialkalküls \Gamma, der Differentialkalküle höherer Ordnung und des Symmetriehomomorphismus werden Metriken und Zusammenhänge auf den Quantensphären S_q^{2N-1} eingeführt. / Quantum groups, quantum spaces for quantum groups and, particularly, quantum homogeneous spaces for quantum groups are important examples of noncommutative geometrical spaces. In this thesis, the odd-dimensional quantum spheres S_q^{2N-1} introduced by Vaksman and Soibelman, as a class of homogeneous quantum spaces, are investigated. The goal of the paper is to provide a framework of covariant differential calculus on them and to enable thereby an investigation of their noncommutative geometry. For N>=4, covariant first order differential calculi on S_q^{2N-1} are classified under two different settings of additional constraints. It is shown that there exist exactly four two-parameter families of covariant first order differential *-calculi on S_q^{2N-1} for N>=4 having bimodules of 1-forms which are generated as free left modules by the differentials dz_i, dz^*_i, 1<=i<=N, of the 2N algebra generators of the quantum sphere. None of these differential calculi is an inner calculus. Moreover, it is proved that there exist exactly five one-parameter families of covariant first order differential calculi on S_q^{2N-1} for N>=4 having bimodules of 1-forms which are generated as left modules by dz_i, dz^*_i, 1<=i<=N, and for which all relations in the left S_q^{2N-1}-module of 1-forms are algebraically generated by exactly one relation between invariant 1-forms. Three of these families consist of *-calculi, including one which consists of inner calculi. All calculi mentioned exist also for N=2 and N=3. For one particular inner first order differential calculus \Gamma it is shown that in any higher order differential calculus \Gamma^\wedge extending \Gamma, all differential forms of order 2N+1 or higher vanish. A symmetry homomorphism (braiding) for \Gamma is constructed. Using the differential calculus \Gamma, the higher order differential calculi and the braiding, metrics and connections are introduced on the quantum spheres S_q^{2N-1}.
|
12 |
Field theory on a non-commutative planeHofheinz, Frank 30 June 2003 (has links)
Quantenfeldtheorien, die auf Räumen mit nichtkommutierenden Koordinaten definiert sind, finden in den letzten Jahren zunehmend Interesse. Mögliche Anwendungen dieser Modelle gibt es unter anderem in der Stringtheorie, der Phänomenologie der Elementarteilchen und in der Festkörperphysik. In der vorliegenden Arbeit untersuchen wir nichtstörungstheoretisch solche nichtkommutativen Feldtheorien mit Hilfe von Monte-Carlo Simulationen. Wir betrachten eine zweidimensionale reine U(1) Eichfeldtheorie und eine dreidimensionale skalare Feldtheorie. Dazu bilden wir die entsprechenden Gittertheorien auf dimensional reduzierte Modelle ab, die mittels N x N Matrizen formuliert sind. Die 2d Eichtheorie auf dem Gitter ist äquivalent zum twisted Eguchi-Kawai Modell, das wir für N=25 bis 515 simulierten. Wir beobachteten ein deutliches Skalierungsverhalten der Ein- und Zweipunktfunktionen von Wilson-Schleifen sowie von Zweipunktfunktionen von Polyakov-Linien bei großen N. Die Zweipunktfunktionen stimmen mit einer universellen Wellenfunktionsrenormierung überein. Der Doppel-Skalierungslimes bei N gegen unendlich entspricht dem Kontinuumslimes in der nichtkommutativen Gittereichtheorie. Das beobachtete Skalierungsverhalten bei großen N zeigt die nichtstörungstheoretische Renormierbarkeit dieser nichtkommutativen Feldtheorie. Für kleine Flächen gilt das Flächengesetz der Wilson-Schleifen wie in der kommutativen 2d planaren Eichtheorie. Für große Flächen finden wir jedoch stattdessen ein oszillierendes Verhalten. In diesem Bereich wächst die Phase der Wilson-Schleifen linear mit der Fläche. Identifiziert man den Nichtkommutativitätsparameter mit einem inversen Magnetfeld, entspricht dies dem Aharonov-Bohm-Effekt. Als nächstes untersuchen wir das 3d lambda phi^4 Modell mit zwei nichtkommutierenden Dimensionen. Wir analysieren das Phasendiagramm. Unsere Ergebnisse stimmen mit einer Vermutung von Gubser und Sondhi in vier Dimensionen überein. Sie sagen vorher, daß sich der geordnete Bereich in eine uniforme und eine nichtuniforme Phase aufspaltet. Desweiteren zeigen wir Ergebnisse für Korrelatoren und der Dispersionsrelation. In der nichtkommutativen Feldtheorie ist die Lorentz-Symmetrie explizit gebrochen, was zu einer deformierten Dispersionsrelation führt. In der Ein-Schleifen Störungstheorie ergibt sich ein zusätzlicher infrarot divergenter Term. Unsere Daten bestätigen dieses störungstheoretische Ergebnis. Wir bestätigen ebenso eine Beobachtung von Ambjorn und Catterall, daß eine nichtuniforme Phase auch in zwei Dimensionen existiert, obwohl dies eine spontane Brechung der Translationssymmetrie impliziert. / In the recent years there is a surge of interest in quantum field theories on spaces with non-commutative coordinates. The potential applications of such models include string theory, particle phenomenology as well as solid state physics. We perform a non-perturbative study of such non-commutative field theories by the means of Monte Carlo simulations. In particular we consider a two dimensional pure U(1) gauge field theory and a three dimensional scalar field theory. To this end we map the corresponding lattice theories on dimensionally reduced models, which are formulated in terms of N x N matrices. The 2d gauge theory on the lattice is equivalent to the twisted Eguchi-Kawai model, which we simulated at N ranging from 25 to 515. We observe a clear large N scaling for the 1- and 2-point function of Wilson loops, as well as the 2-point function of Polyakov lines. The 2-point functions agree with a universal wave function renormalization. The large N double scaling limit corresponds to the continuum limit of non-commutative gauge theory, so the observed large N scaling demonstrates the non-perturbative renormalizability of this non-commutative field theory. The area law for the Wilson loops holds at small physical area as in commutative 2d planar gauge theory, but at large areas we find an oscillating behavior instead. In that regime the phase of the Wilson loop grows linearly with the area. This agrees with the Aharonov-Bohm effect in the presence of a constant magnetic field, identified with the inverse non-commutativity parameter. Next we investigate the 3d lambda phi^4 model with two non-commutative coordinates and explore its phase diagram. Our results agree with a conjecture by Gubser and Sondhi in d=4, who predicted that the ordered regime splits into a uniform phase and a phase dominated by stripe patterns. We further present results for the correlators and the dispersion relation. In non-commutative field theory the Lorentz invariance is explicitly broken, which leads to a deformation of the dispersion relation. In one loop perturbation theory this deformation involves an additional infrared divergent term. Our data agree with this perturbative result. We also confirm the recent observation by Ambjorn and Catterall that stripes occur even in d=2, although they imply the spontaneous breaking of the translation symmetry.
|
13 |
Wick Rotation for Quantum Field Theories on Degenerate Moyal SpaceLudwig, Thomas 03 July 2013 (has links)
In dieser Arbeit wird die analytische Fortsetzung von Quantenfeldtheorien auf dem nichtkommutativen Euklidischen Moyal-Raum mit kommutativer Zeit zu entsprechenden Moyal-Minkowski Raumzeit (Wick Rotation) erarbeitet. Dabei sind diese Moyal-Räume durch eine konstante Nichtkommutativiät
gegeben. Einerseits wird die Wick Rotation im Kontext der algebraischen Quantenfeldtheorie, ausgehend von einer Arbeit von Schlingemann, hergeleitet. Von einem Netz Euklidischer Observablen wird die Lorentz’sche Theorie durch alle Bilder der fortgesetzten Poincare Gruppenwirkung auf der Zeit-Null Schicht erhalten. Dabei wird gezeigt, dass die Vorgänge der nichtkommutativen Deformation und der Wick Rotation kommutieren. Andererseits ist so eine analytische Fortsetzung ebenfalls für Quantenfeldtheorien, die durch einen Satz von Schwingerfunktionen definiert ist, möglich. Durch die Gültigkeit einer Kombination aus Wachstumsbedinungen, die aus der Wick Rotation von Osterwalder und Schrader bekannt sind, kann der Übergang zu einer deformierten Wightman-Theorie gezeigt werden. Abschließend beinhaltet diese Arbeit ergänzende
Resultate zu den physikalischen Eigenschaften der Kovarianz und der Lokalität.
|
14 |
Nonperturbative studies of quantum field theories on noncommutative spacesVolkholz, Jan 17 December 2007 (has links)
Diese Arbeit befasst sich mit Quantenfeldtheorien auf nicht-kommutativen Räumen. Solche Modelle treten im Zusammenhang mit der Stringtheorie und mit der Quantengravitation auf. Ihre nicht-störungstheoretische Behandlung ist üblicherweise schwierig. Hier untersuchen wir jedoch drei nicht-kommutative Quantenfeldtheorien nicht-perturbativ, indem wir die Wirkungsfunktionale in eine äquivalente Matrixformulierung übersetzen. In der Matrixdarstellung kann die jeweilige Theorie dann numerisch behandelt werden. Als erstes betrachten wir ein regularisiertes skalares Modell auf der nicht-kommutativen Ebene und untersuchen den Kontinuumslimes bei festgehaltener Nicht-Kommutativität. Dies wird auch als Doppelskalierungslimes bezeichnet. Insbesondere untersuchen wir das Verhalten der gestreiften Phase. Wir finden keinerlei Hinweise auf die Existenz dieser Phase im Doppelskalierungslimes. Im Anschluss daran betrachten wir eine vier-dimensionale U(1) Eichtheorie. Hierbei sind zwei der räumlichen Richtungen nicht-kommutativ. Wir untersuchen sowohl die Phasenstruktur als auch den Doppelskalierungslimes. Es stellt sich heraus, dass neben den Phasen starker und schwacher Kopplung eine weitere Phase existiert, die gebrochene Phase. Dann bestätigen wir die Existenz eines endlichen Doppelskalierungslimes, und damit die Renormierbarkeit der Theorie. Weiterhin untersuchen wir die Dispersionsrelation des Photons. In der Phase mit schwacher Kopplung stimmen unsere Ergebnisse mit störungstheoretischen Berechnungen überein, die eine Infrarot-Instabilität vorhersagen. Andererseits finden wir in der gebrochenen Phase die Dispersionsrelation, die einem masselosen Teilchen entspricht. Als dritte Theorie betrachten wir ein einfaches, in seiner Kontinuumsform supersymmetrisches Modell, welches auf der "Fuzzy Sphere" formuliert wird. Hier wechselwirken neutrale skalare Bosonen mit Majorana-Fermionen. Wir untersuchen die Phasenstruktur dieses Modells, wobei wir drei unterschiedliche Phasen finden. / This work deals with three quantum field theories on spaces with noncommuting position operators. Noncommutative models occur in the study of string theories and quantum gravity. They usually elude treatment beyond the perturbative level. Due to the technique of dimensional reduction, however, we are able to investigate these theories nonperturbatively. This entails translating the action functionals into a matrix language, which is suitable for numerical simulations. First we explore a scalar model on a noncommutative plane. We investigate the continuum limit at fixed noncommutativity, which is known as the double scaling limit. Here we focus especially on the fate of the striped phase, a phase peculiar to the noncommutative version of the regularized scalar model. We find no evidence for its existence in the double scaling limit. Next we examine the U(1) gauge theory on a four-dimensional spacetime, where two spatial directions are noncommutative. We examine the phase structure and find a new phase with a spontaneously broken translation symmetry. In addition we demonstrate the existence of a finite double scaling limit which confirms the renormalizability of the theory. Furthermore we investigate the dispersion relation of the photon. In the weak coupling phase our results are consistent with an infrared instability predicted by perturbation theory. If the translational symmetry is broken, however, we find a dispersion relation corresponding to a massless particle. Finally, we investigate a supersymmetric theory on the fuzzy sphere, which features scalar neutral bosons and Majorana fermions. The supersymmetry is exact in the limit of infinitely large matrices. We investigate the phase structure of the model and find three distinct phases. Summarizing, we study noncommutative field theories beyond perturbation theory. Moreover, we simulate a supersymmetric theory on the fuzzy sphere, which might provide an alternative to attempted lattice formulations.
|
15 |
The Chern character of theta-summable Cq-Fredholm modulesMiehe, Jonas Philipp 25 April 2024 (has links)
In this thesis, we develop a framework that generalizes the previously known notions of theta-summable Fredholm modules to the setting of locally convex dg algebras. By introducing an additional action of the Clifford algebra, we may treat the even and odd cases simultaneously. In particular, we recover the theory developed by Güneysu/Ludewig and extend the definition of odd theta-summable Fredholm modules to the differential graded category. We then construct a Chern character, which serves as a differential graded refinement of the JLO cocycle, and prove that it has all the expected analytical and homological properties. As an application, we prove an odd noncommutative index theorem relating the spectral flow of a theta-summable Fredholm module to the pairing of the Chern character with the odd Bismut-Chern character in entire (differential graded) cyclic homology, thereby extending results obtained by Güneysu/Cacciatori and Getzler.
|
Page generated in 0.1057 seconds