• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 15
  • 11
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 90
  • 27
  • 26
  • 23
  • 23
  • 20
  • 18
  • 17
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

O problema do centro-foco para singularidades nilpotentes no plano / The center focus problem for planar nilpotent singularities

Itikawa, Jackson 22 March 2012 (has links)
O estudo dos pontos singulares em campos vetoriais analíticos é um problema quase completamente resolvido. O único caso que ainda permanece insolúvel é o caso monodrômico, em que as órbitas circundam a singularidade. Em sistemas diferenciais analíticos, se p é singularidade monodrômica, então p ou é um centro, ou é um foco. O problema do centro-foco consiste em determinar condições que diferenciem os casos em que p é um foco, daqueles em que p é um centro. O tema central desta dissertação é a investigação do problema do centro-foco em sistemas diferenciais analíticos com singularidade nilpotente. Este problema é bastante estudado, uma vez que ainda não existe um algoritmo eficiente para este caso, tal como ocorre em sistemas com singularidades não degeneradas. Estudamos duas técnicas bastante distintas. A primeira faz uso da teoria das formas normais e aborda o problema da maneira clássica, dividindo-o na investigação da monodromia e no estudo da estabilidade. O outro método investiga os sistemas diferenciais com singularidades nilpotentes como limite de sistemas com singularidades não degeneradas. A fim de avaliarmos sua eficiência e compreendermos as possíveis obstruções envolvidas, aplicamos os métodos a famílias concretas de sistemas diferenciais / The study of singular points in planar analytic vector fields is a problem almost completely solved. The only case that remains open is the monodromic one, in which the orbits turn around the singularity. In analytic differential systems, if p is a monodromic singular point, then p is either a center or a focus. The center-focus problem consists in determining conditions for distinguishing between a center and a focus. The main purpose of this work is the investigation of the center-focus problem in analytic differential systems with nilpotent singular points. This problem is still widely studied, since there is no algorithm for such case, comparable to the Lyapunov method for the case of non-degenerate singularities. We studied two different methods. The first makes use of the normal form theory and deals with the problem in the classic way, splitting it up in two parts: the investigation of the monodromy and the study of the stability. The latter investigates the differential analytic systems with nilpotent singular points as limit of differential systems with nondegenerate singularities. In order to evaluate the efficiency and understand possible obstructions, we applied the two techniques to concrete families of differential systems
32

Reductions and Triangularizations of Sets of Matrices

Davidson, Colin January 2006 (has links)
Families of operators that are triangularizable must necessarily satisfy a number of spectral mapping properties. These necessary conditions are often sufficient as well. This thesis investigates such properties in finite dimensional and infinite dimensional Banach spaces. In addition, we investigate whether approximate spectral mapping conditions (being "close" in some sense) is similarly a sufficient condition.
33

Reductions and Triangularizations of Sets of Matrices

Davidson, Colin January 2006 (has links)
Families of operators that are triangularizable must necessarily satisfy a number of spectral mapping properties. These necessary conditions are often sufficient as well. This thesis investigates such properties in finite dimensional and infinite dimensional Banach spaces. In addition, we investigate whether approximate spectral mapping conditions (being "close" in some sense) is similarly a sufficient condition.
34

Lie methods in pro-p groups

Snopçe, Ilir. January 2009 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Department of Mathematical Sciences, 2009. / Includes bibliographical references.
35

Estruturas complexas comauto-espaços nilpotentes e soluveis / Complex structures having nilpotent and solvable eigenspaces

Santos, Edson Carlos Licurgo 25 June 2007 (has links)
Orientador: Luiz Antonio Barrera San Martin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T11:48:47Z (GMT). No. of bitstreams: 1 Santos_EdsonCarlosLicurgo_D.pdf: 405695 bytes, checksum: 334d5172d85f7bc35539dbd900fbef67 (MD5) Previous issue date: 2007 / Resumo: Seja (g; [·,·]) uma álgebra de Lie com uma estrutura complexa integrável J. Os ± i-auto-espaços de J são subálgebras complexas de gC isomorfas a álgebra (g; [*]J ) com colchete [X * Y ]J = ½ ([X, Y ] - [JX, JY ]). Consideramos, no capítulo 2, o caso onde estas subálgebras são nilpotentes e mostramos que a álgebra de Lie original (g, [·,·]) é solúvel. Consideramos também o caso 6-dimensional e determinamos explicitamente a única álgebra de Lie possível (g; [*]J ). Finalizamos esse capítulo pruduzindo vários exemplos ilustrando diferentes situações, em particular mostramos que para cada s existe g com estrutura complexa J tal que (g; [*]J ) é s-passos nilpotente. Exemplos similares para estruturas hipercomplexas são também construidos. No capítulo 3 consideramos o caso onde os ±i-auto-espaços de J são subálgebras complexas solúveis e a álgebra complexa é uma álgebra de Lie semi-simples. Mostramos que, se a álgebra real é compacta, uma tal estrutura complexa depende unicamente de um subespaço da subálgebra de Cartan. Finalizamos esse capítulo considerando o caso em que as subálgebras solúveis complexas estão contidas em subálgebras de Borel de uma órbita aberta da ação dos automorfismos internos da álgebra real. Mostramos que, assim como no caso compacto, as estruturas complexas são determinandas, de modo único, por subespaços da subálgebra de Cartan. Ao final da tese apresentamos um procedimento, elaborado em MAPLE, que possibilita testar a identidade de Jacobi quando os colchetes de Lie são dados pelas constantes de estrutura / Abstract: Let (g; [·,·]) be a Lie algebra with an integrable complex structure J. The ±i eigenspaces of J are complex subalgebras of gC isomorphic to the algebra (g; [*]J )with bracket [X * Y ]J = ½ ([X, Y ] - [JX, JY ]). We consider, in chapter three, thecase where these subalgebras are nilpotent and prove that the original Lie algebra(g, [·,·]) must be solvable. We consider also the 6-dimensional case and determineexplicitly the possible nilpotent Lie algebras (g; [*]J ). We finish this chapter byproducing several examples illustrating different situations, in particular we showthat for each given s there exists g with complex structure J such that (g; [*]J ) iss-step nilpotent. Similar examples of hypercomplex structures are also built.In Chapter 3 we consider the case where the ± i eigenspaces of J are solvablecomplex subalgebras and gC is a semisimple Lie algebra. We prove that, if g is compact, such a complex structure comes from a subspace of the Cartan subalgebra.We finish this chapter by considering the case where the solvable complex subalgebras are contained in Borel subalgebras of an open orbit of the action of inner automorphisms of the real algebra.At the end of the thesis we present an algorithm, made in MAPLE, that allowus to verify the Jacobi identity when the Lie brackets are defined by the structureconstants / Doutorado / Mestre em Matemática
36

Uma introdução às derivações localmente nilpotentes com uma aplicação ao 14º problema de Hilbert / An introduction to the locally nilpotent derivations with an application to the Hilbert\'s 14th problem

Liliam Carsava Merighe 30 March 2015 (has links)
O principal objetivo desta dissertação é estudar um contraexemplo para o Décimo Quarto Problema de Hilbert no caso de dimensão n = 5, que foi apresentado por Arno van den Essen ([6]) em 2006 e que é baseado em um contraexemplo de D. Daigle e G. Freudenburg ([4]). Para isso, serão estudados os conceitos fundamentais da teoria de derivações e os princípios básicos das derivações localmente nilpotentes, bem como seus respectivos corolários. Dentre esses princípios encontra-se o Princípio 13, que garante que, se B é uma k- álgebra polinomial, digamos B = k[x1; ..., xn], (onde k é um corpo de característica zero) e D é uma derivação localmente nilpotente sobre B, então seu núcleo A = ker D satisfaz A = B &cap: Frac(A). Assim encontramos o contraexemplo esperado, ao mostrar que A não é finitamente gerado sobre k. Além disso, no apêndice deste trabalho, é dada uma prova para o caso de dimensão 1 do Décimo Quarto Problema de Hilbert. / The main objective of this thesis is to study a counterexample to the Hilberts Fourteenth Problem in dimension n = 5, which was presented by Arno van den Essen ([6]) in 2006 and that is based on a counterexample of D. Daigle and G. Freudenburg ([4]). For these purpose, we study the fundamental concepts of the theory of derivations and the basic principles of locally nilpotent derivations and their corollaries. Among these principles, Principle 13 ensures that if B is a k-algebra polynomial, say B = k[x1; ..., xn], (where k is a field of characteristic zero) and D is a locally nilpotent derivation on B, then its kernel A = ker D satisfies A = B ∩ Frac(A). Once we have proved that A is not finitely generated over k, we find the expected counterexample. In addition, in the appendix of this work is given a proof for the Hilberts Fourteenth Problemin dimension n = 1.
37

O problema do centro-foco para singularidades nilpotentes no plano / The center focus problem for planar nilpotent singularities

Jackson Itikawa 22 March 2012 (has links)
O estudo dos pontos singulares em campos vetoriais analíticos é um problema quase completamente resolvido. O único caso que ainda permanece insolúvel é o caso monodrômico, em que as órbitas circundam a singularidade. Em sistemas diferenciais analíticos, se p é singularidade monodrômica, então p ou é um centro, ou é um foco. O problema do centro-foco consiste em determinar condições que diferenciem os casos em que p é um foco, daqueles em que p é um centro. O tema central desta dissertação é a investigação do problema do centro-foco em sistemas diferenciais analíticos com singularidade nilpotente. Este problema é bastante estudado, uma vez que ainda não existe um algoritmo eficiente para este caso, tal como ocorre em sistemas com singularidades não degeneradas. Estudamos duas técnicas bastante distintas. A primeira faz uso da teoria das formas normais e aborda o problema da maneira clássica, dividindo-o na investigação da monodromia e no estudo da estabilidade. O outro método investiga os sistemas diferenciais com singularidades nilpotentes como limite de sistemas com singularidades não degeneradas. A fim de avaliarmos sua eficiência e compreendermos as possíveis obstruções envolvidas, aplicamos os métodos a famílias concretas de sistemas diferenciais / The study of singular points in planar analytic vector fields is a problem almost completely solved. The only case that remains open is the monodromic one, in which the orbits turn around the singularity. In analytic differential systems, if p is a monodromic singular point, then p is either a center or a focus. The center-focus problem consists in determining conditions for distinguishing between a center and a focus. The main purpose of this work is the investigation of the center-focus problem in analytic differential systems with nilpotent singular points. This problem is still widely studied, since there is no algorithm for such case, comparable to the Lyapunov method for the case of non-degenerate singularities. We studied two different methods. The first makes use of the normal form theory and deals with the problem in the classic way, splitting it up in two parts: the investigation of the monodromy and the study of the stability. The latter investigates the differential analytic systems with nilpotent singular points as limit of differential systems with nondegenerate singularities. In order to evaluate the efficiency and understand possible obstructions, we applied the two techniques to concrete families of differential systems
38

Grupos abelianos-por-nilpotentes do tipo homologico 'FP IND.3' / Abelian-by-nilpotent of homological type 'FP IND.3'

Rodrigues, Claudenir Freire 12 April 2006 (has links)
Orientador: Dessislava H. Kochloukova / Tese (doutorado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-07T18:15:42Z (GMT). No. of bitstreams: 1 Rodrigues_ClaudenirFreire_D.pdf: 1150293 bytes, checksum: 63045fd15f6ef421699cbcf26de55d92 (MD5) Previous issue date: 2006 / Resumo: Neste trabalho estudamos grupos abstratos finitamente gerados G que são extensões cindidas de um grupo abeliano A por um grupo Q nilpotente de classe 2. Mostramos que se G tem tipo homológico F P3, então o quociente G/N também tem tipo homológico F P3 onde N é o fecho normal do centro de Q em G. Observamos que não existe classificação quando G pode ter tipo FP3, nem classificação para tipo F P2 ou ser finitamente apresentável. Por causa disso nós trabalhamos com um quociente especifico de G. Ainda fica em aberto se cada quociente de G tem tipo FP3 quando G tem tipo FP3. Observamos que isso vale quando G é grupo metabeliano, nesse caso a teoria de Bieri-Strebel pode ser aplicada / Abstract: We study abstract finitely generated groups G that are split extensions from A abelian group by Q nilpotent group of class two. We show that if G has homological type FP3 then the quotient group GjN has homological type FP3 too, where N is the normal closure of the center of Q in G. Since there is no classification when G is of type FP3, nor when G is of type FP2 or finitely presented we work with one specific quotient. It is an open problem whether every quotient of G has type F P3. This holds if G is a metabelian group and in this case the Bieri-Strebel theory applies / Doutorado / Doutor em Matemática
39

On Some Properties of Elements of Rings

Hoopes-Boyd, Emily Ann 09 November 2021 (has links)
No description available.
40

単連結べき零Lie群のパラメータ剛性をもつ作用 / Parameter rigid actions of simply connected nilpotent Lie groups

丸橋, 広和 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18044号 / 理博第3922号 / 新制||理||1566(附属図書館) / 30902 / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 浅岡 正幸, 教授 加藤 毅, 教授 藤原 耕二 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM

Page generated in 0.0658 seconds