• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Affine Hermite-Lorentz manifolds / Variétés affines Hermite-Lorentz

Barucchieri, Bianca 26 September 2019 (has links)
Dans ce travail nous nous intéressons aux groupes cristallographiques, i.e. aux sous-groupes du groupe des transformations affines qui agissent proprement discontinûment et de façon cocompacte sur l’espace affine. Ce sont les groupes fondamentaux des variétés affines compactes et complètes. Nous classifions les groupes cristallographiques dont la partie linéaire préserve une forme hermitienne de signature (n,1). Grunewald et Margulis ont prouvé que ces groupes cristallographiques sont virtuellement résolubles (la conjecture d’Auslander affirme que c’est toujours le cas). Notre classification est effectuée pour n ≤ 3. Elle correspond à la classification, à revêtement fini près, des variétés Hermite-Lorentz plates, compactes et complètes en dimension complexe inférieure ou égale à4. Ce travail est inspiré par ceux menés par Bieberbach, puis Fried, et enfin Grunewald et Margulis sur les groupes cristallographiques dont la partie linéaire préserve une forme quadratique définie positive ou lorentzienne. En effectuant cette classification, nous avons été amené à étudier certains familles d’algèbres de Lie nilpotentes de dimension 8. Nous avons ensuite étendu cette classification à celle de toutes les algèbres de Lie 3-nilpotentes de dimension 8 ayant l’algèbre de Lie libre 3-nilpotente à 3générateurs pour quotient. Ce résultat peut être vu comme un pas dans la direction d’une classification des algèbres de Lie nilpotentes de dimension 8. Ensuite nous nous sommes demandé lesquelles de ces algèbres admettent une métrique pseudo-riemannienne plate et nous avons donné une réponse partielle. / In this work we deal with crystallographic groups, i.e. the subgroups of the group of affine transformations that act properly discontinuously and cocompactly on affine space. In otherwords they are the fundamental groups of compact and complete affine manifolds. In this thesis we classify such groups with the additional hypothesis that the linear part preserves a Hermitian form of signature (n,1). Grunewald and Margulis proved that such crystallographic groups are virtually solvable (the Auslander conjecture states that this is always true). Our classification is for n ≤ 3. It corresponds to a classification, up to finite covering, and for complex dimension at most 4, of flat compact complete Hermite-Lorentz manifolds. This is inspired by the works done by Bieberbach,then Fried, and finally Grunewald and Margulis who classified crystallographic groups whose line arpart preserves a positive definite or Lorentzian quadratic form. Making this classification we had to classify a family of 8-dimensional nilpotent Lie algebras. We then extended this classification toall the 8-dimensional 3-step nilpotent Lie algebras having the free 2-step nilpotent Lie algebra on 3generators as quotient. This result can be seen as a step in the direction of a general classification of nilpotent Lie algebras of dimension 8. We then wondered which of these Lie algebras admit flat pseudo-Riemannian metrics and gave a partial answer to this question.
2

Fraïssé-Hrushovski predimensions on nilpotent Lie algebras

Amantini, Andrea 30 June 2011 (has links)
In dieser Arbeit wird das Fraïssé-Hrushowskis Amalgamationsverfahren in Zusammenhang mit nilpotenten graduierten Lie Algebren über einem endlichen Körper untersucht. Die Prädimensionen die in der Konstruktion auftauchen sind mit dem gruppentheoretischen Begriff der Defizienz zu vergleichen, welche auf homologische Methoden zurückgeführt werden kann. Darüber hinaus wird die Magnus-Lazardsche Korrespondenz zwischen den oben genannten Lie Algebren und nilpotenten Gruppen von Primzahl-Exponenten beschrieben. Dabei werden solche Gruppen durch die Baker-Haussdorfsche Formel in den entsprechenden Algebren definierbar interpretiert. Es wird eine omega-stabile Lie Algebra von Nilpotenzklasse 2 und Morleyrang omega + omega erhalten, indem man eine unkollabierte Version der von Baudisch konstruierten "new uncountably categorical group" betrachtet. Diese wird genau analysiert. Unter anderem wird die Unabhängigkeitsrelation des Nicht-Gabelns durch die Konfiguration des freien Amalgams charakterisiert. Mittels eines induktiven Ansatzes werden die Grundlagen entwickelt, um neue Prädimensionen für Lie Algebren der Nilpotenzklassen größer als zwei zu schaffen. Dies erweist sich als wesentlich schwieriger als im Fall 2. Wir konzentrieren uns daher auf die Nilpotenzklasse 3, als Induktionsbasis des oben genannten Prozesses. In diesem Fall wird die Invariante der Defizienz auf endlich erzeugte Lie Algebren adaptiert. Erstes Hauptergebnis der Arbeit ist der Nachweis dass diese Definition zu einem vernüftigen Begriff selbst-genügender Erweiterungen von Lie Algebren führt und sehr nah einer gewünschten Prädimension im Hrushovskischen Sinn ist. Wir zeigen – als zweites Hauptergebnis – ein erstes Amalgamationslemma bezüglich selbst-genügender Einbettungen. / In this work, the so called Fraïssé-Hrushowski amalgamation is applied to nilpotent graded Lie algebras over the p-elements field with p a prime. We are mainly concerned with the uncollapsed version of the original process. The predimension used in the construction is compared with the group theoretical notion of deficiency, arising from group Homology. We also describe in detail the Magnus-Lazard correspondence, to switch between the aforementioned Lie algebras and nilpotent groups of prime exponent. In this context, the Baker-Hausdorff formula allows such groups to be definably interpreted in the corresponding algebras. Starting from the structures which led to Baudisch’ new uncountably categorical group, we obtain an omega-stable Lie algebra of nilpotency class 2, as the countable rich Fraïssé limit of a suitable class of finite Lie algebras. We study the theory of this structure in detail: we show its Morley rank is omega+omega and a complete description of non-forking independence is given, in terms of free amalgams. In a second part, we develop a new framework for the construction of deficiency-predimensions among graded Lie algebras of nilpotency class higher than 2. This turns out to be considerably harder than the previous case. The nil-3 case in particular has been extensively treated, as the starting point of an inductive procedure. In this nilpotency class, our main results concern a suitable deficiency function, which behaves for many aspects like a Hrushovski predimension. A related notion of self-sufficient extension is given. We also prove a first amalgamation lemma with respect to self-sufficient embeddings.

Page generated in 0.0845 seconds