• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 692
  • 81
  • 77
  • 68
  • 41
  • 25
  • 14
  • 14
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1199
  • 406
  • 269
  • 190
  • 159
  • 152
  • 130
  • 126
  • 119
  • 100
  • 96
  • 95
  • 93
  • 91
  • 89
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Neuartige Synthese magnetischer Nanostrukturen: Metallcarbide und Metallnitride der Übergangsmetalle Fe/Co/Ni / Novel synthesis of magnetic nanostructures: metal carbides and metal nitrides of transition metals Fe/Co/Ni

Kraupner, Alexander January 2011 (has links)
Magnetische Nanopartikel bieten ein großes Potential, da sie einerseits die Eigenschaften ihrer Bulk-Materialien besitzen und anderseits, auf Grund ihrer Größe, über komplett unterschiedliche magnetische Eigenschaften verfügen können; Superparamagnetismus ist eine dieser Eigenschaften. Die meisten etablierten Anwendungen magnetischer Nanopartikel basieren heutzutage auf Eisenoxiden. Diese bieten gute magnetische Eigenschaften, sind chemisch relativ stabil, ungiftig und lassen sich auf vielen Synthesewegen relativ einfach herstellen. Die magnetischen Eigenschaften der Eisenoxide sind materialabhängig aber begrenzt, weshalb nach anderen Verbindungen mit besseren Eigenschaften gesucht werden muss. Eisencarbid (Fe3C) kann eine dieser Verbindungen sein. Dieses besitzt vergleichbare positive Eigenschaften wie Eisenoxid, jedoch viel bessere magnetische Eigenschaften, speziell eine höhere Sättigungsmagnetisierung. Bis jetzt wurde Fe3C hauptsächlich in Gasphasenabscheidungsprozessen synthetisiert oder als Nebenprodukt bei der Synthese von Kohlenstoffstrukturen gefunden. Eine Methode, mit der gezielt Fe3C-Nanopartikel und andere Metallcarbide synthetisiert werden können, ist die „Harnstoff-Glas-Route“. Neben den Metallcarbiden können mit dieser Methode auch die entsprechenden Metallnitride synthetisiert werden, was die breite Anwendbarkeit der Methode unterstreicht. Die „Harnstoff-Glas-Route“ ist eine Kombination eines Sol-Gel-Prozesses mit einer anschließenden carbothermalen Reduktion/Nitridierung bei höheren Temperaturen. Sie bietet den Vorteil einer einfachen und schnellen Synthese verschiedener Metallcarbide/nitride. Der Schwerpunkt in dieser Arbeit lag auf der Synthese von Eisencarbiden/nitriden, aber auch Nickel und Kobalt wurden betrachtet. Durch die Variation der Syntheseparameter konnten verschiedene Eisencarbid/nitrid Nanostrukturen synthetisiert werden. Fe3C-Nanopartikel im Größenbereich von d = 5 – 10 nm konnten, durch die Verwendung von Eisenchlorid, hergestellt werden. Die Nanopartikel weisen durch ihre geringe Größe superparamagnetische Eigenschaften auf und besitzen, im Vergleich zu Eisenoxid Nanopartikeln im gleichen Größenbereich, eine höhere Sättigungsmagnetisierung. Diese konnten in fortführenden Experimenten erfolgreich in ionischen Flüssigkeiten und durch ein Polymer-Coating, im wässrigen Medium, dispergiert werden. Desweiteren wurde durch ein Templatieren mit kolloidalem Silika eine mesoporöse Fe3C-Nanostruktur hergestellt. Diese konnte erfolgreich in der katalytischen Spaltung von Ammoniak getestet werden. Mit der Verwendung von Eisenacetylacetonat konnten neben Fe3C-Nanopartikeln, nur durch Variation der Reaktionsparameter, auch Fe7C3- und Fe3N-Nanopartikel synthetisiert werden. Speziell für die Fe3C-Nanopartikel konnte die Sättigungsmagnetisierung, im Vergleich zu den mit Eisenchlorid synthetisierten Nanopartikeln, nochmals erhöht werden. Versuche mit Nickelacetat führten zu Nickelnitrid (Ni3N) Nanokristallen. Eine zusätzliche metallische Nickelphase führte zu einer Selbstorganisation der Partikel in Scheiben-ähnliche Überstrukturen. Mittels Kobaltacetat konnten, in Sphären aggregierte, metallische Kobalt Nanopartikel synthetisiert werden. Kobaltcarbid/nitrid war mit den gegebenen Syntheseparametern nicht zugänglich. / Magnetic nanoparticles offer a great potential, because they exhibit on the one hand the properties of their bulk materials and on the other hand, because of their size, completely different magnetic properties. The most established applications of magnetic nanoparticles are based on iron oxide. These oxides have good magnetic properties, they are chemical relatively stable, non toxic and easy to prepare. But the magnetic properties are limited. Therefore, we need new materials with improved magnetic properties. Iron carbide (Fe3C) could be one of these materials. Up to now, Fe3C was mainly synthesized in chemical vapor deposition processes (CVD) or was found as side product in the synthesis of carbon structures. A method for the systematical synthesis of metal carbides is the “Urea-Glass-Route”. In addition to the synthesis of metal carbides, this method allows to synthesize metal nitrides, which shows the broad practicability. The “Urea-Glass-Route” is a combination of a sol-gel process with following carbothermal reduction/nitridation at higher temperatures. The method is fast and simple and it is possible to synthesis different metal carbides/nitrides. The main topic of this work is the synthesis of iron carbide/nitride, but also cobalt and nickel is examined. By varying the synthesis parameters, different iron carbide/nitride nanostructures could be synthesized. With the use of iron chloride, Fe3C nanoparticles, in the size range of d = 5 – 10 nm, could be produced. Because of their small size, the particles show superparamagnetism and compared to iron oxide particles (in the same size range) a higher saturation magnetization. In following experiments, the particles could be successfully dispersed in an ionic liquid and with a polymer coating in aqueous medium. Furthermore, via templating with colloidal silica a mesoporous Fe3C structure could be synthesized. The material could be successfully tested in the catalytic ammonia decomposition. By changing the iron source to iron acetylacetonate, Fe7C3 and Fe3N nanoparticles, in addition to Fe3C, could be also synthesized. With nickel acetate it was possible to synthesize nickel nitride (Ni3N) nano crystals. An additional metallic nickel phase in the sample leads to a self organization to disk-like superlattice. Via cobalt acetate, in spheres aggregated, metallic cobalt nanoparticles could be synthesized. Cobalt carbide or nitride was not accessible under these synthesis parameters.
522

Spark Plasma Sintering of Si3N4-based Ceramics : Sintering mechanism-Tailoring microstructure-Evaluationg properties

Peng, Hong January 2004 (has links)
Spark Plasma Sintering (SPS) is a promising rapid consolidation technique that allows a better understanding and manipulating of sintering kinetics and therefore makes it possible to obtain Si3N4-based ceramics with tailored microstructures, consisting of grains with either equiaxed or elongated morphology. The presence of an extra liquid phase is necessary for forming tough interlocking microstructures in Yb/Y-stabilised α-sialon by HP. The liquid is introduced by a new method, namely by increasing the O/N ratio in the general formula RExSi12-(3x+n)Al3x+nOnN16-n while keeping the cation ratios of RE, Si and Al constant. Monophasic α-sialon ceramics with tailored microstructures, consisting of either fine equiaxed or elongated grains, have been obtained by using SPS, whether or not such an extra liquid phase is involved. The three processes, namely densification, phase transformation and grain growth, which usually occur simultaneously during conventional HP consolidation of Si3N4-based ceramics, have been precisely followed and separately investigated in the SPS process. The enhanced densification is attributed to the non-equilibrium nature of the liquid phase formed during heating. The dominating mechanism during densification is the enhanced grain boundary sliding accompanied by diffusion- and/or reaction-controlled processes. The rapid grain growth is ascribed to a dynamic ripening mechanism based on the formation of a liquid phase that is grossly out of equilibrium, which in turn generates an extra chemical driving force for mass transfer. Monophasic α-sialon ceramics with interlocking microstructures exhibit improved damage tolerance. Y/Yb- stabilised monophasic α-sialon ceramics containing approximately 3 vol% liquid with refined interlocking microstructures have excellent thermal-shock resistance, comparable to the best β-sialon ceramics with 20 vol% additional liquid phase prepared by HP. The obtained sialon ceramics with fine-grained microstructure show formidably improved superplasticity in the presence of an electric field. The compressive strain rate reaches the order of 10-2 s-1 at temperatures above 1500oC, that is, two orders of magnitude higher than that has been realised so far by any other conventional approaches. The high deformation rate recorded in this work opens up possibilities for making ceramic components with complex shapes through super-plastic forming.
523

On Adhesion and Galling in Metal Forming

Hanson, Magnus January 2008 (has links)
Metal forming is widely used in the industry to produce cans, tubes, car chassis, rods, wires etc. Forming certain materials such as stainless steel, aluminium and titanium, is often difficult, and problems associated with transfer of work material to the tool material are frequent. Transferred material may scratch and deform the following manufactured pieces, a phenomenon named galling. Lubricants can, to some degree, solve these problems. However, many forming oils are hazardous to the environment, and therefore it is highly desirable to replace them or get rid of them. This thesis investigates the nature of the galling phenomenon and tries to explain under which conditions such problems arise. Dry sliding tests have been performed in a dedicated load-scanner equipment. Difficult work materials have been tested against tool materials under various conditions and the samples have then been studied by advanced analytical techniques, such as ESCA and TEM, to study the detailed tribological mechanisms occurring in the contact between work and tool material. The general assumption is that material transfer only occurs when there is metal to metal contact. In this work it has been found that, for stainless steel, the oxide plays a very important role for the sticky behaviour of stainless steel, and that metal to metal contact is not a necessary condition for galling. Several PVD-coated tool materials have been tested and it was found that vanadium nitride coatings can be tuned regarding their chemical composition, to be more galling resistant than conventional coatings. The surface roughness of the tool material is very strongly coupled to the tools ability to resist galling. The smoother the tool surface, the less risk of material transfer and galling. Some work materials, like aluminium and titanium, transfer to even the smoothest tool materials. A proposed explanation for this is that their oxides are much harder than the bulk material and the tool material matrix. When deforming the work material, the oxide will fracture into small hard scales, which can indent the tool material. Indented hard scales will then contribute to material transfer of more work material to the tool.
524

Production Of Boron Nitride Nanotubes From The Reaction Of Nh3 With Boron And Iron Powder Mixture

Noyan, Selin 01 September 2012 (has links) (PDF)
Boron nitride nanotubes (BNNTs), which are structurally similar to carbon nanotubes (CNTs), were synthesized in 1995 for the first time. They are made up by folding atom sheets which consist of boron and nitrogen atoms into cylindrical form. After their discovery, BNNTs have been attracting great attention due to their extraordinary mechanical, thermal, electrical, and optical properties. In this study, BNNTs were synthesized from the reaction of ammonia gas with the boron and iron powder mixture in a tubular reactor which was connected to a mass spectrometer for on-line chemical analysis of the reactor effluent stream. The synthesized materials were purified with acid treatment. Chemical analysis results showed that nitrogen and hydrogen gases were present in addition to ammonia gas. XRD results revealed that the solid phases in the synthesized material were hexagonal boron nitride, rhombohedral boron nitride, iron, and boron-iron compounds (FeB49 and Fe3B). Reactions taking place in BNNT synthesis were proposed as the decomposition of ammonia gas which was the only gas phase reaction, the formation of boron-iron compounds from the reaction of boron with iron, and boron nitride formation from the reaction of nitrogen with boron-iron compounds. Agglomerated, hollow, multi-walled nanotubes were synthesized with an outer diameter range of 10-550 nm. Both open and close-ended nanotubes were observed. The interlayer distance between BN sheets was measured about 0.33 nm and this distance indicated the d002 plane of hexagonal boron nitride. BNNTs exhibited Type II isotherms with a Type B hysteresis. A decrease in the surface area of the synthesized BNNTs was observed with an increase in temperature. The highest surface area was 147.6 m2/g. Average pore diameter of BNNTs synthesized at different temperatures was around 38 &Aring / . Deposition rate of boron nitride increased with an increase in temperature. After a certain temperature, deposition rate decreased with temperature due to the sintering effect. The highest deposition rate was observed when BNNTs were synthesized with the B/Fe weight ratio of 15/1 at 1300 &deg / C.
525

Experimental and theoretical studies of nitride fuels

Pukari, Merja January 2013 (has links)
With respect to nitrides being considered as potential fast reactor fuels, research is conducted on the out-of-pile thermophysical properties, sintering and fabrication processes, gas migration mechanisms, self-diffusion and point defect behaviour of actinide nitrides, their surrogate materials, and the inert matrix material ZrN . The experimental research, carried out in the framework of qualifying fuel for the European Lead Cooled Training Reactor (ELECTRA), shows that sintered ZrN and (Dy,Zr)N pellet densities are influenced by the oxygen concentration in the material. The effect is confirmed in sintered (Pu,Zr)N pellets. Oxygen concentration also plays a role in the thermophysical properties of inert matrix nitride fuels, but does not have an impact on the electrical properties of these materials. With the fuel fabrication methods applied here, clean nitride powders can be synthesized. However, the subsequent fabrication phases, including milling and solid solution formation, increases the impurity levels significantly. Research of equal importance is performed on materials free of fabrication-induced impurities, whose properties are studied by employing first-principles methods. ZrN, UN and (U,Zr)N are studied, whereas the results from ZrN are expected to be applicable for actinide nitrides as a first approximation. The migration of noble gases in ZrN, on the atomic scale, confirms the experimentally observed tendency for noble gases with higher atomic number to be retained in the fuel matrix, while the majority of He is released to the fuel pin. Materials modelling implies that self-diffusion of nitrogen and metal atoms in inert matrix nitride fuels is accelerated under irradiation, since noble gas retention reduces migration barriers which govern self-diffusion. Unlike Kr and Xe, He has the capacity to be released into the fuel matrix, after having been trapped in a vacancy. The results are expected to aid in providing an explanation to the macroscopic diffusion phenomena in nitride fuels, as the diffusion behaviour of noble gases is sparsely studied. In addition, a study on the miscibility of ZrN and UN in a narrow composition range suggests solubility, based on the negative mixing energies. The results obtained from research on inert matrix nitride fuel underline several beneficial properties which are desirable in a fast reactor fuel. The relevance of these results is analyzed and contextualized in the thesis, from the perspective of current research and development in the field. / <p>QC 20130611</p>
526

Theoretical Routes for c-BN Thin Film Growth

Karlsson, Johan January 2013 (has links)
c-BN has been in focus for several years due to its interesting properties. The possibility for large area CVD is a requirement for the realization of these different properties in various applications. Unfortunately, there are at present severe problems in the CVD growth of c-BN. The purpose with this research project has been to theoretically investigate, using DFT calculations, the possibility for a layer-by-layer CVD growth of c-BN. It could be established that, PEALD, using a BF3-H2-NH3-F2 pulse cycle and a diamond substrate, is a promising method for deposition of c-BN films. The gaseous species will decompose in the plasma and form BFx, H, NHx, and F species (x = 0, 1, 2, 3). The H and F radicals will uphold the cubic structure by completely hydrogenate, or fluorinate, the growing surface. However, surface radical sites will appear during the growth process as a result of atomic H, or F, abstraction reactions. The addition of NHx growth species (x = 0, 1, 2) to B radical sites, and BFx growth species (x = 0, 1, 2) to N radical sites, will then result in a continuous growth of c-BN.
527

Spectroscopic analysis of selected silicon ceramics

Leitch, Sam Anthony 17 June 2005
<p>Silicon ceramics are popular in both commercial applications and material research. The purpose of this thesis is to present measurements and analysis of four different silicon ceramics: á, â and ã phases of silicon nitride and silicon oxynitride using soft x-ray spectroscopy, which analyses the electronic structure of materials by measuring the absorption and emission of x-ray radiation. Absorption and emission spectra of these materials are presented, many of which have not be previously documented. The results are compared to model spectra and together they provide information about the electronic structure of the material.</p><p>Assignments of emission features to element, orbital, and site symmetry are performed for each material. Combinations of silicon and nitrogen emission spectra provide insight into the strained bonding structure of nitrogen. It is concluded that p-dð interaction plays a role in the bonding arrangement of nitrogen and oxygen sites within these structures. The emission features of non-equivalent silicon sites within ã-Si3N4 are identified, which represents some of the first analysis of same element, non-equivalent sites in a material.</p><p>Silicon absorption and emission spectra were plotted on the same energy scale to facilitate measurement of the band gap. Since previously measured band gaps are not well represented in literature, the measured band gaps were compared to values predicted using DFT calculations. The band gap values are in reasonable agreement to calculated values, but do not vary as widely as predicted.</p>
528

Production of a diesel fuel cetane enhancer from canola oil using supported metallic carbide and nitride catalysts

Sulimma, Hardi Lee 17 September 2008
Six ã-Al2O3 supported metallic nitride and carbide catalysts were chosen for a scouting test for the production of a diesel fuel cetane enhancer from canola oil. The six catalysts chosen for study were ã-Al2O3 supported molybdenum (Mo) carbide and nitride, tungsten (W) carbide and nitride, and vanadium (V) nitride and carbide. All six catalysts were prepared by the impregnation method and characterized using various techniques. The six catalysts were screened for their affinity for oxygen removal, fatty acid conversion, alkane/olefin selectivity, hydrogen consumption, and gas-by product production from oleic acid. The scouting test was carried out at a reaction temperature of 390°C, a LHSV of 0.46 hr-1, and elevated hydrogen partial pressures of greater than 7000 kPa, in a laboratory microreactor in an upflow configuration. The scouting test revealed that the two molybdenum catalysts performed the best with oxygen removal near 100% and alkane/olefin content of greater than 30%. <p>Next, the supported molybdenum carbide and nitride catalysts were compared against one another over a wider range of operating conditions. A temperature range of 380 390°C, a LHSV range of 0.64 1.28 hr-1, and a hydrogen partial pressure of 7100 kPa were used. Both catalysts had the same metal loading of 7.4 wt% molybdenum. The two catalysts were compared on the basis of oxygen removal, alkane/olefin selectivity, diesel fuel selectivity, and hydrogen consumption, while using both triolein and canola oil as the feed. It was found that the supported molybdenum nitride was the superior choice for this process, specifically when using the more complex canola oil feed. The supported molybdenum nitride catalyst delivered oxygen removal of greater than 85%, alkane/olefin selectivity of greater than 20%, and diesel fuel selectivity of greater than 40%, for all conditions studied. <p>Finally, a preliminary catalyst and process optimization was carried out on the chosen ã-Al2O3 supported molybdenum nitride catalyst. The catalyst optimization consisted of varying the metal loading of the catalyst from 7.4 wt% to 22.7 wt%. The catalysts were examined over a temperature range of 390 410°C, a LHSV range of 0.9 1.2 hr-1, and a hydrogen partial pressure of 8300 kPa, with canola oil as the chosen feed. It was found that the increase in molybdenum loading on the catalyst delivered an average increase in the alkane/olefin selectivity of 43.2% and an average increase in the diesel fuel selectivity of 5.3 %. The process optimization studied a temperature range of 390 410°C, a LHSV range of 0.6 1.2 hr-1, and a hydrogen partial pressure range of 7800 - 8900 kPa, with canola oil as the chosen feed. Within the limits of the design, it was found that the optimum operating conditions were 395°C, 1.05 hr-1, and 8270 kPa. At these conditions the predicted yields of alkane/olefin products and diesel fuel are 47.3 and 50.5 g/100g liquid fed, respectively.
529

Indium Nitride Surface Structure, Desorption Kinetics and Thermal Stability

Acharya, Ananta R 12 August 2013 (has links)
Unique physical properties such as small effective mass, high electron drift velocities, high electron mobility and small band gap energy make InN a candidate for applications in high-speed microelectronic and optoelectronic devices. The aim of this research is to understand the surface properties, desorption kinetics and thermal stability of InN epilayers that affect the growth processes and determine film quality as well as device performance and life time. We have investigated the structural properties, the surface desorption kinetics, and the thermal stability using Auger electron spectroscopy (AES), x-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM), high resolution electron energy loss spectroscopy (HREELS), and temperature programmed desorption (TPD). Investigations on high pressure chemical vapor deposition (HPCVD)-grown InN samples revealed the presence of tilted crystallites, which were attributed to high group V/III flux ratio and lattice mismatch. A study of the thermal stability of HPCVD-grown InN epilayers revealed that the activation energy for nitrogen desorption was 1.6±0.2 eV, independent of the group V/III flux ratio. Initial investigations on the ternary alloy In0.96Ga0.04N showed single-phase, N-polar epilayers using XRD and HREELS, while a thermal desorption study revealed an activation energy for nitrogen desorption of 1.14 ± 0.06 eV. HREELS investigations of atomic layer epitaxy (ALE)-grown InN revealed vibrational modes assigned to N-N vibrations. The atomic hydrogen cleaned InN surface also exhibited modes assigned to surface N-H without showing In-H species, which indicated N-polar InN. Complete desorption of hydrogen from the InN surface was best described by the first-order desorption kinetics with an activation energy of 0.88 ± 0.06 eV and pre-exponential factor of (1.5 ± 0.5) ×105 s-1. Overall, we have used a number of techniques to characterize the structure, surface bonding configuration, thermal stability and hydrogen desorption kinetics of InN and In0.96Ga0.04N epilayers grown by HPCVD and ALE. High group V/III precursors ratio and lattice mismatch have a crucial influence on the film orientation. The effects of hydrogen on the decomposition add to the wide variation in the activation energy of nitrogen desorption. Presence of surface defects lowers the activation energy for hydrogen desorption from the surface.
530

Consideration of Deformation of TiN Thin Films with Preferred Orientation Prepared by Ion-Beam-Assisted Deposition

HAYASHI, Toshiyuki, MATSUMURO, Akihito, WATANABE, Tomohiko, MORI, Toshihiko, TAKAHASHI, Yutaka, YAMAGUCHI, Katsumi 01 1900 (has links)
No description available.

Page generated in 0.1824 seconds