• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 10
  • 1
  • Tagged with
  • 35
  • 21
  • 16
  • 13
  • 11
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Remoção de matéria orgânica e nitrogênio de lixiviados de aterro sanitário: tratamento por nitritação/desnitritação biológica e processos físico-químicos. / Removal of organic matter and nitrogen from landfill leachate: treatment by nitritation/denitritation biological and physico-chemical processes.

Yabroudi Bayram, Suher Carolina 13 November 2012 (has links)
A presente pesquisa objetivou estudar a remoção de matéria orgânica e nitrogênio de lixiviados de aterro sanitário, através do processo biológico de nitritação/desnitritação, operando um reator de lodos ativados em bateladas sequenciais e pós-tratamento físico químico. O trabalho foi dividido em cinco etapas. Durante a primeira, buscou-se ajustar a duração das etapas anóxica e aerada e as condições operacionais, assim como avaliar a utilização da matéria orgânica presente no lixiviado como fonte de carbono. Ao longo de 16 ciclos de tratamento, os resultados da etapa anóxica indicaram que a duração desta não deveria ser maior que uma hora. A desnitritação ficou limitada ao baixo conteúdo de matéria orgânica de fácil biodegradação no lixiviado, o que levou a baixas taxas, entre 0,010 e 0,142 kg.N-NO2-/ m³.dia. Na segunda etapa, foi ajustada a duração da reação anóxica em uma hora, registrando taxa de desnitritação volumétrica média de 1,704 kg.N-NO2-/ m³.dia, assim como remoção de 80% da DBO e 47% de COT, o que indica que a maior parte da matéria orgânica biodegradável foi empregada pelos micro-organismos heterotróficos na desnitritação. Ao final da fase aeróbia, ao longo da primeira e segunda etapa, mantendo uma concentração de oxigênio dissolvido na massa de líquido do reator de 2,0 mg.O2/L, foi possível alcançar eficiências de remoção de N-NH3 de 98% com predominância do N-NO2-, evidenciado pela relação N-NO2-/(N-NO2-+ N-NO3-) próximo de 1. As taxas volumétrias de nitritação variaram na faixa de 0,095 e 0,199 kg.N-NH3/m³.dia. Como o sobrenadante do reator principal apresentava concentrações elevadas de N-NO2- ao final da fase aeróbia, o efluente foi aplicado em um reator de polimento adicionou-se etanol como fonte de carbono. O tratamento complementar ocorreu sem desequilíbrios, apesar do prolongado tempo de reação anóxica requerido para reduzir toda a massa de nitrito introduzida no sistema, fato que levou a registrar baixas taxas de desnitritação, entre 0,221 e 0,052 kg N-NO2-/kg SSV.dia. Durante a quarta etapa, foi avaliado em um segundo reator de lodo ativado em bateladas sequenciais o processo de nitritação/desnitritação, adicionando dentro do reator, ao início da fase anóxica, o etanol para a redução biológica de todo o nitrogênio oxidado a nitrogênio gasoso. Com concentrações de OD no conteúdo do reator de 2,0 mg.O2/L e valores de pH de 8,27±0,27, a relação N-NO2-/(N-NO2- + N-NO3-) não foi superior a 70% nos 9 ciclos estudados, indicando a presença de nitrato. A hipótese que melhor explica a situação refere-se à possibilidade de que a biomassa esteja se adaptando as novas condições operacionais e a probabilidade de que a adição do etanol durante a reação anóxica possa estar criando condições que favorecem a atividade das bactérias oxidantes de nitrito, assim como os menores diâmetros de floco. A quinta etapa compreendeu a aplicação de um pós-tratamento com redução do pH, adição de sais de ferro e carvão ativado em pó (CAP). Nestes testes, foram registradas remoções de COT e cor de de 93% e 98% respectivamente, mantendo pH em 3,0 e dosagens de 300 mg.Fe+³/L e 15 g.CAP/L. / This research aimed to study the removal of organic matter and nitrogen from landfill leachate through biological process of nitritation/denitritation, operating an activated sludge reactor in sequential batches, and physical- chemical post treatment. The work was divided into five stages. During the first stage, was tried to adjust the duration of the anoxic and aerated stages and operational conditions, and evaluate the use of organic matter present in the leachate as a carbon source. Over 16 cycles of treatment, the results of the anoxic stage indicated that this duration should not be greater than one hour. The denitritation was limited by the low organic matter rapidly biodegradable content into the leachate, which led to low rates between 0.010 and 0.142 kg.N-NO2-/ m³.day. During the second stage, was adjusted the duration of the anoxic reaction to one hour, and showed medium volumetric denitritation rate of 1.704 kg.N-NO2-/m³.day, as well as removal of 80% of BOD and 47% of TOC. These results indicate, most of the biodegradable organic matter was used for heterotrophic microorganisms for denitritation. At the end of aerobic phase, during the first and second stage, and maintaining a concentration of oxygen dissolved into the liquid mass of the reactor in 2.0 mg.O2/L, it was possible to achieve removal efficiencies of NH3-N to 98% with predominance of N-NO2- , that was evidenced by the ratio N-NO2-/(N-NO2-+ N-NO3-) close to 1. The volumetric nitritation rates varied from 0,095 to 0,199 kg.N-NH3/m³.day. The effluent from the principal reactor contained high concentrations of N-NO2- at the end of the aerobic phase, for that reason it was applied a polishing stage where was added ethanol as a carbon source. Complementary treatment transcurred without problems, just was required a prolonged anoxic reaction to reduce the entire mass of nitrite introduced into the system, fact that lead to register low rates of denitritation, between 0.221 and 0.052 kg N-NO2-/kg SSV.day. During the fourth stage, was evaluated in a second activated sludge sequential batch reactor; the nitritation/desnitritation process added ethanol inside the reactor, at the beginning of the anoxic phase, for the biological reduction from nitrogen oxidized to nitrogen gaseous. Maintained OD concentrations into the reactor of 2,0 mg.O2/L and pH values of 8.27± 0.27, the N-NO2-/(N-NO2- + N-NO3-) ratio was not higher than 70% during the 9 cycles studied, indicating the presence of nitrate. The best hypothesis which explains this situation, related to the possibility of the biomass was adapted to the new operating conditions, and the possibility to addition ethanol at the begging of anoxic reaction, may be created adequate conditions for oxidizer nitrite bacteria, as well as the small floc diameters. The fifth stage consisted to apply a physical-chemical post-treatment with pH and addition of iron salts and powdered activated carbon (PAC). During these tests, was removal 93% and 98% of TOC and color respectively, with pH to 3,0 and doses of 300 mg.Fe+³/L and 15 g.PAC/L.
12

Tratamento enzimático de lixiviado de aterro sanitário. / Enzymatic treatment of landfill leachate.

Lara Lessa Feijó 13 March 2015 (has links)
Os processos biológicos apresentam o menor custo de todas as técnicas atualmente aplicadas para o tratamento de lixiviados de aterros sanitários. Porém, eles não vêm demonstrando capacidade em degradar a matéria orgânica recalcitrante presente nesse tipo de água residuária. O presente estudo teve por objetivo avaliar a possibilidade da utilização de enzimas, que são largamente empregadas na indústria, como auxílio em tal remoção. Após a caracterização do lixiviado do aterro sanitário da cidade de Paulínia, verificou-se que o mesmo se encontrava em adiantada fase de biodegradação, com pH de 8,40 ± 0,14; baixa concentração de matéria orgânica facilmente biodegradável (DBO de 857 ± 475 mgO2/L) e altas concentrações de N-NH3(2343 ± 399 mg/L) e de Carbono Orgânico Total (2066 ± 746 mg/L). A investigação experimental foi realizada em duas etapas, empregandose um reator de lodo ativado em bateladas sequencial, com biomassa adaptada ao lixiviado. Na primeira etapa, utilizando o planejamento fatorial completo 2³, verificouse que aumentando o pH e diminuindo a concentração inicial de N-NH3 era possível evitar o acúmulo de nitrogênio amoniacal no sistema a partir da remoção total desse composto. Porém, a inibição às bactérias oxidantes da amônia não foi cessada, pois a eficiência de oxidação via biológica chegava no máximo a 49,1%, sendo os 50,9% restantes atribuídos à volatilização de nitrogênio amoniacal, que era intensificada com o aumento do pH. A segunda etapa teve por objetivo a remoção de matéria orgânica recalcitrante, medida como COT, presente no lixiviado de aterro sanitário, com a utilização da enzima lacase. Esta demonstrou uma expressiva capacidade de remoção de nitrito, de 127 mgNO2 -/L para menos que 0,1 mgNO2 -/L em 4 dias, e de COT, passando de 2333 mgC/L para 1400 mgC/L, ao ser utilizada sozinha, e de 1317 mgC/L para 174 mgC/L quando utilizada juntamente com bactérias heterotróficas. Ao final, observou-se remoções superiores a 99,9% de N-NH3 mantendo-se a concentração de OD=2,4 mg/L, pH=8,5 e concentração de N-NH3 inicial em torno de 270 mg/L. Remoções de 92,3% de nitrito e 40% de COT foram obtidas ao se adicionar a enzima ao efluente nitritado, porém foi observado um aumento na concentração de COT e de NKT após a inserção da solução enzimática, devido a uma alta concentração desses compostos na mesma. / The biological process is the one with the lowest cost of all the techniques currently used for the treatment of landfill leachate. However, it has not demonstrated ability to degrade recalcitrant organic matter present in this type of wastewater. This study aimed to evaluate the possibility of using enzymes, which are already used in industry, as an aid in such removal. After characterizing the Paulinia´s landfill leachate, wich was used in this study, it was found that it was in an advanced stage of degradation, with a pH of 8.40 ± 0.14; low concentration of readily biodegradable organic matter (BOD of 857 ± 475 mgO2/L) and high ammonia nitrogen (2343 ± 399 mgN/L) and Total Organic Carbon - TOC (2066 ± 746 mgC/L). The experimental research was conducted in two stages, using a sequential batch reactor with biomass adapted to the leachate. In the first step, using a full factorial design 2³, it was found that by increasing pH and decreasing the initial concentration of NH3-N is possible to avoid the accumulation of ammonia in the system by the total removal of that compound. However, the inhibition of ammonia oxidizing bacteria is not ceased. The biological pathway for oxidation efficiency reaches the maximum at 49.1%, with the remaining 50.9% being attributed to the volatilization of ammonia, which is enhanced with increasing pH. The second stage was aimed at removing recalcitrant organic matter, measured by the COT present in landfill leachate, with the use of laccase enzyme. The enzyme demonstrated a significant nitrite removal capacity, decreasing its concentration of 127 mgNO2 -/L to less than 0.1 mgNO2 -/L, and the TOC, from 2333 mgC/L to 1400 mgC/L in the same period time.
13

Remoção de matéria orgânica e nitrogênio de lixiviados de aterro sanitário: tratamento por nitritação/desnitritação biológica e processos físico-químicos. / Removal of organic matter and nitrogen from landfill leachate: treatment by nitritation/denitritation biological and physico-chemical processes.

Suher Carolina Yabroudi Bayram 13 November 2012 (has links)
A presente pesquisa objetivou estudar a remoção de matéria orgânica e nitrogênio de lixiviados de aterro sanitário, através do processo biológico de nitritação/desnitritação, operando um reator de lodos ativados em bateladas sequenciais e pós-tratamento físico químico. O trabalho foi dividido em cinco etapas. Durante a primeira, buscou-se ajustar a duração das etapas anóxica e aerada e as condições operacionais, assim como avaliar a utilização da matéria orgânica presente no lixiviado como fonte de carbono. Ao longo de 16 ciclos de tratamento, os resultados da etapa anóxica indicaram que a duração desta não deveria ser maior que uma hora. A desnitritação ficou limitada ao baixo conteúdo de matéria orgânica de fácil biodegradação no lixiviado, o que levou a baixas taxas, entre 0,010 e 0,142 kg.N-NO2-/ m³.dia. Na segunda etapa, foi ajustada a duração da reação anóxica em uma hora, registrando taxa de desnitritação volumétrica média de 1,704 kg.N-NO2-/ m³.dia, assim como remoção de 80% da DBO e 47% de COT, o que indica que a maior parte da matéria orgânica biodegradável foi empregada pelos micro-organismos heterotróficos na desnitritação. Ao final da fase aeróbia, ao longo da primeira e segunda etapa, mantendo uma concentração de oxigênio dissolvido na massa de líquido do reator de 2,0 mg.O2/L, foi possível alcançar eficiências de remoção de N-NH3 de 98% com predominância do N-NO2-, evidenciado pela relação N-NO2-/(N-NO2-+ N-NO3-) próximo de 1. As taxas volumétrias de nitritação variaram na faixa de 0,095 e 0,199 kg.N-NH3/m³.dia. Como o sobrenadante do reator principal apresentava concentrações elevadas de N-NO2- ao final da fase aeróbia, o efluente foi aplicado em um reator de polimento adicionou-se etanol como fonte de carbono. O tratamento complementar ocorreu sem desequilíbrios, apesar do prolongado tempo de reação anóxica requerido para reduzir toda a massa de nitrito introduzida no sistema, fato que levou a registrar baixas taxas de desnitritação, entre 0,221 e 0,052 kg N-NO2-/kg SSV.dia. Durante a quarta etapa, foi avaliado em um segundo reator de lodo ativado em bateladas sequenciais o processo de nitritação/desnitritação, adicionando dentro do reator, ao início da fase anóxica, o etanol para a redução biológica de todo o nitrogênio oxidado a nitrogênio gasoso. Com concentrações de OD no conteúdo do reator de 2,0 mg.O2/L e valores de pH de 8,27±0,27, a relação N-NO2-/(N-NO2- + N-NO3-) não foi superior a 70% nos 9 ciclos estudados, indicando a presença de nitrato. A hipótese que melhor explica a situação refere-se à possibilidade de que a biomassa esteja se adaptando as novas condições operacionais e a probabilidade de que a adição do etanol durante a reação anóxica possa estar criando condições que favorecem a atividade das bactérias oxidantes de nitrito, assim como os menores diâmetros de floco. A quinta etapa compreendeu a aplicação de um pós-tratamento com redução do pH, adição de sais de ferro e carvão ativado em pó (CAP). Nestes testes, foram registradas remoções de COT e cor de de 93% e 98% respectivamente, mantendo pH em 3,0 e dosagens de 300 mg.Fe+³/L e 15 g.CAP/L. / This research aimed to study the removal of organic matter and nitrogen from landfill leachate through biological process of nitritation/denitritation, operating an activated sludge reactor in sequential batches, and physical- chemical post treatment. The work was divided into five stages. During the first stage, was tried to adjust the duration of the anoxic and aerated stages and operational conditions, and evaluate the use of organic matter present in the leachate as a carbon source. Over 16 cycles of treatment, the results of the anoxic stage indicated that this duration should not be greater than one hour. The denitritation was limited by the low organic matter rapidly biodegradable content into the leachate, which led to low rates between 0.010 and 0.142 kg.N-NO2-/ m³.day. During the second stage, was adjusted the duration of the anoxic reaction to one hour, and showed medium volumetric denitritation rate of 1.704 kg.N-NO2-/m³.day, as well as removal of 80% of BOD and 47% of TOC. These results indicate, most of the biodegradable organic matter was used for heterotrophic microorganisms for denitritation. At the end of aerobic phase, during the first and second stage, and maintaining a concentration of oxygen dissolved into the liquid mass of the reactor in 2.0 mg.O2/L, it was possible to achieve removal efficiencies of NH3-N to 98% with predominance of N-NO2- , that was evidenced by the ratio N-NO2-/(N-NO2-+ N-NO3-) close to 1. The volumetric nitritation rates varied from 0,095 to 0,199 kg.N-NH3/m³.day. The effluent from the principal reactor contained high concentrations of N-NO2- at the end of the aerobic phase, for that reason it was applied a polishing stage where was added ethanol as a carbon source. Complementary treatment transcurred without problems, just was required a prolonged anoxic reaction to reduce the entire mass of nitrite introduced into the system, fact that lead to register low rates of denitritation, between 0.221 and 0.052 kg N-NO2-/kg SSV.day. During the fourth stage, was evaluated in a second activated sludge sequential batch reactor; the nitritation/desnitritation process added ethanol inside the reactor, at the beginning of the anoxic phase, for the biological reduction from nitrogen oxidized to nitrogen gaseous. Maintained OD concentrations into the reactor of 2,0 mg.O2/L and pH values of 8.27± 0.27, the N-NO2-/(N-NO2- + N-NO3-) ratio was not higher than 70% during the 9 cycles studied, indicating the presence of nitrate. The best hypothesis which explains this situation, related to the possibility of the biomass was adapted to the new operating conditions, and the possibility to addition ethanol at the begging of anoxic reaction, may be created adequate conditions for oxidizer nitrite bacteria, as well as the small floc diameters. The fifth stage consisted to apply a physical-chemical post-treatment with pH and addition of iron salts and powdered activated carbon (PAC). During these tests, was removal 93% and 98% of TOC and color respectively, with pH to 3,0 and doses of 300 mg.Fe+³/L and 15 g.PAC/L.
14

Performance and control of biofilm systems with partial nitritation and Anammox for supernatant treatment

Szatkowska, Beata January 2007 (has links)
Separate treatment of supernatant with dewatering of digested sludge with application of partial nitritation/Anammox process is assessed to be a cost-effective way to remove about 10-15% of influent nitrogen and, thereby, facilitate possibilities to reach required effluent requirements from the plant. The combined partial nitritation/Anammox process can be performed in two separate reactors or in one-stage. Both process options have been investigated in technical- and laboratory-scale pilot plants with moving-bed biofilm reactors (MBBR) filled with Kaldnes rings. Use of the two-stage process resulted in a very stable partial nitritation with a suitable nitrite to ammonium ratio (NAR) for the following Anammox step. Dissolved oxygen (DO) and pH value were identified as key factors for the partial nitritation process. The Anammox process could also be operated in a stable way. A high nitrite concentration, however, inhibited the process and the time for recovering the process at low nitrite concentration was about four months. Seeding of the partial nitritation reactor with Anammox bacteria (the recirculation of Anammox effluent to the nitritation reactor) turned out to be a simple and easy method to enable creation of an oxic-anoxic biofilm in one reactor. Studies have shown that such a one-stage system would be the best choice for full-scale implementation due to significantly higher nitrogen removal rates and easier operation. The partial nitritation process was found to be the rate-limiting reaction to perform the overall nitrogen removal. Measurements of conductivity and pH were suitable parameters for monitoring of the nitrogen reactions. A control and monitoring system was developed both for two-stage and one-stage technology. The system was mainly based on relationships between conductivity and inorganic nitrogen components, while in the one-stage technology measurements are used of both conductivity and pH and their relationships with inorganic nitrogen compounds. Alkalinity was an additional measured parameter suitable for process control and monitoring. Theoretically calculated values of conductivity were in good agreement with experimentally obtained results. / QC 20100819
15

Tratamento enzimático de lixiviado de aterro sanitário. / Enzymatic treatment of landfill leachate.

Feijó, Lara Lessa 13 March 2015 (has links)
Os processos biológicos apresentam o menor custo de todas as técnicas atualmente aplicadas para o tratamento de lixiviados de aterros sanitários. Porém, eles não vêm demonstrando capacidade em degradar a matéria orgânica recalcitrante presente nesse tipo de água residuária. O presente estudo teve por objetivo avaliar a possibilidade da utilização de enzimas, que são largamente empregadas na indústria, como auxílio em tal remoção. Após a caracterização do lixiviado do aterro sanitário da cidade de Paulínia, verificou-se que o mesmo se encontrava em adiantada fase de biodegradação, com pH de 8,40 ± 0,14; baixa concentração de matéria orgânica facilmente biodegradável (DBO de 857 ± 475 mgO2/L) e altas concentrações de N-NH3(2343 ± 399 mg/L) e de Carbono Orgânico Total (2066 ± 746 mg/L). A investigação experimental foi realizada em duas etapas, empregandose um reator de lodo ativado em bateladas sequencial, com biomassa adaptada ao lixiviado. Na primeira etapa, utilizando o planejamento fatorial completo 2³, verificouse que aumentando o pH e diminuindo a concentração inicial de N-NH3 era possível evitar o acúmulo de nitrogênio amoniacal no sistema a partir da remoção total desse composto. Porém, a inibição às bactérias oxidantes da amônia não foi cessada, pois a eficiência de oxidação via biológica chegava no máximo a 49,1%, sendo os 50,9% restantes atribuídos à volatilização de nitrogênio amoniacal, que era intensificada com o aumento do pH. A segunda etapa teve por objetivo a remoção de matéria orgânica recalcitrante, medida como COT, presente no lixiviado de aterro sanitário, com a utilização da enzima lacase. Esta demonstrou uma expressiva capacidade de remoção de nitrito, de 127 mgNO2 -/L para menos que 0,1 mgNO2 -/L em 4 dias, e de COT, passando de 2333 mgC/L para 1400 mgC/L, ao ser utilizada sozinha, e de 1317 mgC/L para 174 mgC/L quando utilizada juntamente com bactérias heterotróficas. Ao final, observou-se remoções superiores a 99,9% de N-NH3 mantendo-se a concentração de OD=2,4 mg/L, pH=8,5 e concentração de N-NH3 inicial em torno de 270 mg/L. Remoções de 92,3% de nitrito e 40% de COT foram obtidas ao se adicionar a enzima ao efluente nitritado, porém foi observado um aumento na concentração de COT e de NKT após a inserção da solução enzimática, devido a uma alta concentração desses compostos na mesma. / The biological process is the one with the lowest cost of all the techniques currently used for the treatment of landfill leachate. However, it has not demonstrated ability to degrade recalcitrant organic matter present in this type of wastewater. This study aimed to evaluate the possibility of using enzymes, which are already used in industry, as an aid in such removal. After characterizing the Paulinia´s landfill leachate, wich was used in this study, it was found that it was in an advanced stage of degradation, with a pH of 8.40 ± 0.14; low concentration of readily biodegradable organic matter (BOD of 857 ± 475 mgO2/L) and high ammonia nitrogen (2343 ± 399 mgN/L) and Total Organic Carbon - TOC (2066 ± 746 mgC/L). The experimental research was conducted in two stages, using a sequential batch reactor with biomass adapted to the leachate. In the first step, using a full factorial design 2³, it was found that by increasing pH and decreasing the initial concentration of NH3-N is possible to avoid the accumulation of ammonia in the system by the total removal of that compound. However, the inhibition of ammonia oxidizing bacteria is not ceased. The biological pathway for oxidation efficiency reaches the maximum at 49.1%, with the remaining 50.9% being attributed to the volatilization of ammonia, which is enhanced with increasing pH. The second stage was aimed at removing recalcitrant organic matter, measured by the COT present in landfill leachate, with the use of laccase enzyme. The enzyme demonstrated a significant nitrite removal capacity, decreasing its concentration of 127 mgNO2 -/L to less than 0.1 mgNO2 -/L, and the TOC, from 2333 mgC/L to 1400 mgC/L in the same period time.
16

Systems for ammonium concentration for further removal in the partial nitritation/anammox technology.

Owusu-Agyeman, Isaac January 2012 (has links)
Anammox is one of the main processes discovered quite recently for removal of ammonium from wastewater. Anammox process is cost effective, in that low energy and carbon source is needed. Partial nitritation is a perquisite for anammox in wastewater treatment for removal nitrogen and therefore partial nitritation/Anammox technology is studied substantially and applied in full-scale. However, the technology at present can only be used to treat high rich ammonium streams. Application of Anammox for treatment of low ammonium wastewater is not possible because of low yield of Anammox bacteria. The study aimed at devising strategies for using the Anammox technology to treat wastewater streams with low concentration of ammonium nitrogen. The objective was to get systems that could concentrate ammonium from low ammonium waste streams, so as to be able to treat it with partial nitritation/Anammox process. Two methods were used to concentrate ammonium: ion exchange and reverse osmosis. Ion exchange method was used to concentrate UASB effluents of about 24 - 40 mg NH4-N/l to 188 - 367 mg  NH4-N/l respectively which is about 9 times the initial concentrations. At VRF 5, 163 mg  NH4-N/l concentrate was attained from 41.8 mg  NH4-N/l RO feed. Results also showed that concentrates from both methods are able to be treated with partial nitritation/Anammox technology. However it took more than 32 hours to complete treatment of ion exchange concentrates while it took less than 24 hours to finish the partial nitritation/Anammox process of RO concentrates. The longer time taken can be attributed to high salinity of the concentrates which is as a result of NaCl which was used for regeneration in ion exchange process. Both ion exchange and reverse osmosis are viable methods for concentrating ammonium from UASB effluents. Dissolved oxygen was very important factor that influenced the biological process.
17

Factors increasing efficiency of deammonification process for nitrogen removal from mainstream wastewater.

Wur, Aleksandra January 2014 (has links)
In recent years, the use of Anammox process for wastewater treatment has been thoroughly investigated. Currently, a major challenge is to use this process for the mainstream. The aim of this study is to find factors increasing efficiency of the deammonification process for nitrogen removal from mainstream wastewater in conditions of low ammonia concentration and low temperatures. Two types of lab-scale batch tests were done and obtained results were analysed separately. In the first lab-scale batch test suspended sludge was used and series of OUR tests were carried out. Inhibitors used during experiments were: FNA, FA, NaClO3, fresh UASB effluent and formic acid. The best results, after all tests obtained for using the free nitrous acid as an inhibitor. Results shows that NOB bacterial activity was inhibited, while AOB activity was still high. The second type of lab-scale batch test was used to check interactions between factors which have impact for the NOB suppression. Selected factors were: pH, DO and TAN and these factors were used to plan a series of experiments with MODDE application. After series of 34 experiments, results showed that this method is not effective for low concentrations of TAN and another, more efficient strategy is needed. New strategy should reduce the NOB activity or increase the activity of Anammox. It is difficult to find a good strategy to carry out this process because many factors are affecting it. Using the results, it is necessary to conduct further research, which will give indications to use the deammonification process for mainstream wastewater and will let to achieve good results.
18

Ammonium removal from municipal wastewater with application of ion exchange and partial nitritation/Anammox process

Malovanyy, Andriy January 2014 (has links)
Nitrogen removal from municipal wastewater with application of Anammox process offers cost reduction, especially if it is combined with maximal use of organic content of wastewater for biogas production. In this study a new technology is proposed, which is based on ammonium concentration from municipal wastewater by ion exchange followed by biological removal of ammonium from the concentrated stream by partial nitritation/Anammox process. In experiments on ammonium concentration four the most common ion exchange materials were tested in packed bed columns, namely strong and weak acid cation exchange resins, natural and synthetic zeolites. Experiments with synthetic wastewaters with different content and municipal wastewater showed that strong acid cation resin is the most suitable for ammonium concentration from municipal wastewater due to its high exchange capacity and fast regeneration. Since NaCl was used for regeneration of ion exchange materials, spent regenerant had elevated salinity. Experiments with activity determination showed that both nitritation and Anammox bacteria are inhibited by NaCl, where effect on Anammox bacteria is more severe. Adaptation of partial nitritation/Anammox biomass was studied using two strategies of salinity increase and it was possible to adapt the biomass to NaCl content of 10-15 g/L. The technology was tested in batch mode using strong acid cation resin for ammonium concentration from pretreated municipal wastewater, and partial nitritation/Anammox biomass for nitrogen removal from concentrated stream. It was shown that it is possible to remove 99.9% of ammonium from wastewater with ion exchange while increasing concentration of ammonium in spent regenerant by 18 times. Up to 95% of nitrogen from spent regenerant was removed by partial nitritation/Anammox biomass in batch tests. Moreover, possibilities of integrati on of the technology into municipal wastewater treatment technology, challenges and advantages were discussed. / <p>QC 20140219</p>
19

Assessment of a partial nitritation/Anammox system for nitrogen removal

Gut, Luiza January 2006 (has links)
This thesis evaluates the performance of a deammonification system designed as a two-step tech-nology consisting of an initial partial nitritation followed by an Anammox process. Operation of a technical-scale pilot plant at the Himmerfjärden Wastewater Treatment Plant (Grödinge, Swe-den) has been assessed. Oxygen Uptake Rate (OUR) to evaluate the respiration activity of nitrifi-ers in the system and batch tests to assess reaction rates have also been applied in the study. It was found that the total inorganic nitrogen elimination strongly depended on the nitrite-to-ammonium ratio in the influent to the Anammox reactor, which was correlated with the per-formance of the partial nitritation phase. Therefore, a control strategy for oxidation of ammo-nium to nitrite has been proposed. Controlled oxygen supply to the partial nitritation reactor is obligatory to obtain a proper pH drop indicating oxidation of ammonia to nitrite at the adequate ratio. A very high nitrogen removal efficiency (an average of 84%) and stable operation of the system have been reached. Conductivity measurements were also used to monitor the system influent nitrogen load and the nitrogen removal in the Anammox reactor. The data gathered from the operation of the pilot plant enabled the use of multivariate data analysis to model the process behaviour and the assessment of the covariances between the process parameters. The options for full-scale implementation of the Anammox systems have been proposed as a result of the study. / QC 20101115
20

Anammox in IFAS reactor for reject water treatment

Chen, Bingquan January 2019 (has links)
The aim of this study was to evaluate the performance of the integrated fixed-film activated sludge (IFAS) reactor achieving partial nitritation/anammox process to treat reject water after dewatering of digested sludge. During the study period, dissolved oxygen setpoint, aeration mode and inflow loading were changed to evaluate their influence on the process performance and efficiency in the reactor. Four different values for dissolved oxygen setpoint were tested: 2.0 mg/L, 1.8 mg/L, 1.5mg/L and 1.3 mg/L. Three different aeration modes in a one-hour cycle were tested: 30 min, 35 min, 40 min. And two different inflow loadings were tested: 2 g N/m2∙d and 1.6 g N/m2∙d. Discussion and evaluation were based on laboratory analyses and online sensors. The highest achieved total inorganic nitrogen removal efficiency was 85.6%, at 40 min aeration per hour, 2.0 mg/L dissolved oxygen and with 2 g N/m2∙day inflow NH4-N loading. Specific anammox activity (SAA) tests were also done for the anaerobic ammonia oxidizing bacteria in biofilm attached to the carriers in the IFAS reactor, and the results showed that the bacteria could achieve a higher nitrogen removal rate than in the pilot-scale IFAS reactor.

Page generated in 0.0774 seconds