• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 29
  • 29
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nitrogen cycling in the northern hardwood forest: soil, plant, and atmospheric processes

Nave, Lucas Emil 10 December 2007 (has links)
No description available.
12

Stress-induced alterations in ecosystem function: the role of acidification in lotic metabolism and biogeochemistry

Ely, Damon Thomas 14 June 2010 (has links)
I investigated how anthropogenic acidification influences stream metabolism and nitrogen (N) cycling by considering the stress response of microbial compartments responsible for these ecosystem processes. Microcosm incubations of leaf biofilms from streams of differing pH revealed greater rates of fungal biomass-specific respiration (i.e. the stress metric <i>q</i>CO₂) and biomass-specific N uptake (i.e. <i>q</i>N) with increasing acidity. The positive relationship between <i>q</i>CO₂ and <i>q</i>N indicated alternate fates for N other than structural biomass, possibly related to increased exoenzyme production as part of the stress response. Whole-stream ¹⁵N experiments and measurements of respiration and fungal standing crop across the pH gradient resulted in similar patterns in <i>q</i>CO₂ and <i>q</i>N found in microcosm experiments, supporting <i>q</i>CO₂ as an ecosystem-level stress indicator and providing insight towards controls over N cycling across the pH gradient. Fungal biomass and ecosystem respiration declined with increasing acidity while N uptake metrics were not related to pH, which suggested <i>q</i>N in acid streams was sufficiently high to counteract declines in fungal abundance. During spring, chlorophyll <i>a</i> standing crops were higher in more acidic streams despite lower nutrient concentrations. However, N uptake rates and gross primary production differed little between acid and circumneutral streams. Reduced heterotrophy in acid streams was apparent in lower whole-stream respiration rates, less ability to process organic carbon, and little response of N uptake to added carbon resources. Overall, acid-induced stress in streams was found to impair decomposer activity and caused a decoupling of carbon and nitrogen cycles in these systems. / Ph. D.
13

Breeding for Nitrogen Use Efficiency in Soft Red Winter Wheat

Hitz, Katlyn 01 January 2015 (has links)
Nitrogen use efficient (NUE) wheat varieties have potential to reduce input costs for growers, limit N runoff into water ways, and increase wheat adaptability to warmer environments. Previous studies have done little to explain the genetic basis for NUE and components, nitrogen uptake efficiency (NUpE) and nitrogen utilization efficiency (NUtE). Four studies were conducted to 1) determine genotypic stability of NUE under high and low N regimes and under warming 2) determine effect of warming on NUE 3) indentify QTL associated with NUE components 4) assess the utility of canopy spectral reflectance (CSR) as a high-throughput phenotyping device for NUE. Genotypic response to N stress or warming varied. Uptake efficiency was found to be more important than utilization efficiency to genotypic performance under high and low N environments and under warming. Selection under low N for NUpE and under high N for NUtE most efficiently identified NUE varieties. Uptake and utilization were lower under warming due to quickened development. No strong correlations between the CSR indices and NUE existed. No QTL were found to be significantly associated with NUE components. Further research into the mechanisms controlling NUE and to reveal plant response to N stress and under warming is necessary.
14

Blending polymer-sulfur coated and NBPT-treated urea to improve nitrogen use efficiency and grain yield in corn production systems / Misturas de ureia revestida com enxofre e polímeros e ureia tratada com NBPT para aumentar a eficiência de uso do nitrogênio em sistemas de produção de milho

González Villalba, Hugo Abelardo 25 May 2018 (has links)
Blends of controlled release and stabilized nitrogen (N) fertilizer represent an alternative to provide N at all corn growth stages, and is an option to reduce costs compared to the use of solely controlled release N. In this context, field experiments were conducted in Southeast Brazil with the use of a blend of polymer-sulfur coated urea (PSCU) and NBPT-treated urea (NBPTU) at a 70:30 ratio, applied at corn planting and incorporated into the soil. The objectives of the study were: i) to quantify and measure each fertilizer-derived N fate in the plants, and determine the nitrogen recovery efficiency of each N source in the blend; ii) to evaluate corn grain yield response to N rates (blend) in contrasting cropping systems, and to assess the posibility of reducing N rate when applying a blend of two enhanced efficiency N fertilizers compared to the application of regular urea; iii) understand and monitor changes in plant biomass and N uptake during the growing season. Fertilizer N contributed with less than 50% of the total plant N uptake at all evaluated corn growth stages (V4, V12, R2, and R6). At V4 growth stage, most of the N in the plant derived from fertilizer (NPDF) was provided by NBPTU, while later in the season, most of the NPDF was provided by PSCU. At harvest, most of the plant N was allocated in the grains (59%). Of the total plant N, 64% was supplied by the native soil N pool, 26% was provided by PSCU, and 10% by NBPTU. Therefore, NBPTU provided N to corn early in the season, while PSCU played a crucial role supplying N later in the season, as plants demand for N increased. Soil N was the main N source at all GS and this fraction decreased as N rate increased. At harvest, 64% of the total plant N was derived from the soil native N pool, 26% derived from PSCU, and 10% from urea. The measured fertilizer NRE of urea was in average 36%, and the estimated NUE from PSCU was 51%. In the second study, corn grain yield varied between sites, probably due to soil and climate characteristics of each site. Corn grain yield, N uptake, and biomass production were greatly impacted by fertilizer N. Grain yield and N uptake showed a quadratic response to N rates (blend). The blend of PSCU and NBPTU, applied at corn planting and incorporated into the soil proved to be a great strategy to attain yields at N rates below those needed when using regular urea. The third chapter focused on corn biomass and N uptake and partitioning throughout the growing season, and it was demonstrated that the amount of N uptake after flowering can reach up to 50% of the total plant N, thus, N availability must be guaranteed in late vegetative corn growth stages, and especially in the reproductive stages, which can be achieved by adopting enhanced efficiency N fertilizers such as the blend of PSCU and NBPTU used in this study. / A mistura de fertilizantes nitrogenados de liberação controlada e estabilizados representa uma alternativa para fornecer nitrogênio (N) em todos os estádios da cultura do milho, além de ser uma opção válida para reduzir custos em comparação ao uso exclusivo de produtos de liberação controlada. Neste sentido, conduziram-se experimentos de campo na região Sudeste do Brasil com a aplicação de um blend de ureia revestida com enxofre e polímeros (UREP) e ureia tratada com NBPT (U-NBPT), na proporção 70:30, aplicada na semeadura do milho, de forma incorporada. Os objetivos do trabalho foram: i) avaliar o destino do N dentro das plantas de milho proveniente dos fertilizantes misturados e determinar a eficiência de recuperação de cada um; ii) avaliar a resposta do rendimento de grãos de milho a doses de N (blend) em sistemas de produção contrastantes e avaliar a possibilidade de reduzir as doses de N quando aplicado o blend em comparação à ureia convencional; iii) entender e monitorar as mudanças da biomassa e o nitrogênio dentro das plantas de milho ao longo do ciclo da cultura. No primeiro estudo, o N na planta proveniente da UREP, da U-NBPT, e do solo (N-Solo) variaram ao longo do ciclo do milho. Contudo os fertilizantes nitrogenados contribuiram com menos de 50% do N total da planta em todos os estadios avaliados (V4, V12, R2 e R6). No estádio V4, a maior parte do N na planta proveniente de fertilizante (NPPF) foi fornecido pela U-NBPT, enquanto que nos estadios seguintes, a maior parte do NPPF foi fornecido pela UREP. O N-Solo foi o maior fornecedor de N para a planta, mas a contribuição diminuiu com o aumento das doses de N. Na colheita, 59% do total do N da planta foi alocado nos grãos. Do total de N da planta, 64% foi proveniente do N-Solo, 26% foi fornecido pela UREP, e 10% pela U-NBPT. A eficiência de recuperação da UREP e U-NBPT foram, respectivamente, 51 e 36%. No segundo estudo, o rendimento de grãos de milho variou entre locais, provavelmente devido às condições edafo-climáticas de cada área experimental. A aplicação do fertilizante nitrogenado influenciou o rendimento de grãos de milho, a produção de biomassa e acúmulo de N em todos os locais. O rendimento de grãos e acúmulo de N mostraram uma resposta quadrática às doses de N (blend). A incorporação do blend de UREP e U-NBPT na semeadura do milho mostrou-se como uma ótima estratégia para evitar perdas massivas de N e mostrou que pode atingir produtividade similar a ureia convencional com doses de N menores. O terceiro capítulo, com foco no acúmulo e particionamento da biomassa e N nas plantas de milho ao longo do ciclo, desmonstrou que a quantidade de N absorvido após o florescimento pode chegar a 50% do total de N acumulado nas plantas, pelo que adequada disponibilidade de N deve ser garantida nos estádios vegetativos finais e nos estádios reprodutivos da cultura do milho, o que pode ser conseguido com o uso de misturas de UREP e U-NBPT.
15

Blending polymer-sulfur coated and NBPT-treated urea to improve nitrogen use efficiency and grain yield in corn production systems / Misturas de ureia revestida com enxofre e polímeros e ureia tratada com NBPT para aumentar a eficiência de uso do nitrogênio em sistemas de produção de milho

Hugo Abelardo González Villalba 25 May 2018 (has links)
Blends of controlled release and stabilized nitrogen (N) fertilizer represent an alternative to provide N at all corn growth stages, and is an option to reduce costs compared to the use of solely controlled release N. In this context, field experiments were conducted in Southeast Brazil with the use of a blend of polymer-sulfur coated urea (PSCU) and NBPT-treated urea (NBPTU) at a 70:30 ratio, applied at corn planting and incorporated into the soil. The objectives of the study were: i) to quantify and measure each fertilizer-derived N fate in the plants, and determine the nitrogen recovery efficiency of each N source in the blend; ii) to evaluate corn grain yield response to N rates (blend) in contrasting cropping systems, and to assess the posibility of reducing N rate when applying a blend of two enhanced efficiency N fertilizers compared to the application of regular urea; iii) understand and monitor changes in plant biomass and N uptake during the growing season. Fertilizer N contributed with less than 50% of the total plant N uptake at all evaluated corn growth stages (V4, V12, R2, and R6). At V4 growth stage, most of the N in the plant derived from fertilizer (NPDF) was provided by NBPTU, while later in the season, most of the NPDF was provided by PSCU. At harvest, most of the plant N was allocated in the grains (59%). Of the total plant N, 64% was supplied by the native soil N pool, 26% was provided by PSCU, and 10% by NBPTU. Therefore, NBPTU provided N to corn early in the season, while PSCU played a crucial role supplying N later in the season, as plants demand for N increased. Soil N was the main N source at all GS and this fraction decreased as N rate increased. At harvest, 64% of the total plant N was derived from the soil native N pool, 26% derived from PSCU, and 10% from urea. The measured fertilizer NRE of urea was in average 36%, and the estimated NUE from PSCU was 51%. In the second study, corn grain yield varied between sites, probably due to soil and climate characteristics of each site. Corn grain yield, N uptake, and biomass production were greatly impacted by fertilizer N. Grain yield and N uptake showed a quadratic response to N rates (blend). The blend of PSCU and NBPTU, applied at corn planting and incorporated into the soil proved to be a great strategy to attain yields at N rates below those needed when using regular urea. The third chapter focused on corn biomass and N uptake and partitioning throughout the growing season, and it was demonstrated that the amount of N uptake after flowering can reach up to 50% of the total plant N, thus, N availability must be guaranteed in late vegetative corn growth stages, and especially in the reproductive stages, which can be achieved by adopting enhanced efficiency N fertilizers such as the blend of PSCU and NBPTU used in this study. / A mistura de fertilizantes nitrogenados de liberação controlada e estabilizados representa uma alternativa para fornecer nitrogênio (N) em todos os estádios da cultura do milho, além de ser uma opção válida para reduzir custos em comparação ao uso exclusivo de produtos de liberação controlada. Neste sentido, conduziram-se experimentos de campo na região Sudeste do Brasil com a aplicação de um blend de ureia revestida com enxofre e polímeros (UREP) e ureia tratada com NBPT (U-NBPT), na proporção 70:30, aplicada na semeadura do milho, de forma incorporada. Os objetivos do trabalho foram: i) avaliar o destino do N dentro das plantas de milho proveniente dos fertilizantes misturados e determinar a eficiência de recuperação de cada um; ii) avaliar a resposta do rendimento de grãos de milho a doses de N (blend) em sistemas de produção contrastantes e avaliar a possibilidade de reduzir as doses de N quando aplicado o blend em comparação à ureia convencional; iii) entender e monitorar as mudanças da biomassa e o nitrogênio dentro das plantas de milho ao longo do ciclo da cultura. No primeiro estudo, o N na planta proveniente da UREP, da U-NBPT, e do solo (N-Solo) variaram ao longo do ciclo do milho. Contudo os fertilizantes nitrogenados contribuiram com menos de 50% do N total da planta em todos os estadios avaliados (V4, V12, R2 e R6). No estádio V4, a maior parte do N na planta proveniente de fertilizante (NPPF) foi fornecido pela U-NBPT, enquanto que nos estadios seguintes, a maior parte do NPPF foi fornecido pela UREP. O N-Solo foi o maior fornecedor de N para a planta, mas a contribuição diminuiu com o aumento das doses de N. Na colheita, 59% do total do N da planta foi alocado nos grãos. Do total de N da planta, 64% foi proveniente do N-Solo, 26% foi fornecido pela UREP, e 10% pela U-NBPT. A eficiência de recuperação da UREP e U-NBPT foram, respectivamente, 51 e 36%. No segundo estudo, o rendimento de grãos de milho variou entre locais, provavelmente devido às condições edafo-climáticas de cada área experimental. A aplicação do fertilizante nitrogenado influenciou o rendimento de grãos de milho, a produção de biomassa e acúmulo de N em todos os locais. O rendimento de grãos e acúmulo de N mostraram uma resposta quadrática às doses de N (blend). A incorporação do blend de UREP e U-NBPT na semeadura do milho mostrou-se como uma ótima estratégia para evitar perdas massivas de N e mostrou que pode atingir produtividade similar a ureia convencional com doses de N menores. O terceiro capítulo, com foco no acúmulo e particionamento da biomassa e N nas plantas de milho ao longo do ciclo, desmonstrou que a quantidade de N absorvido após o florescimento pode chegar a 50% do total de N acumulado nas plantas, pelo que adequada disponibilidade de N deve ser garantida nos estádios vegetativos finais e nos estádios reprodutivos da cultura do milho, o que pode ser conseguido com o uso de misturas de UREP e U-NBPT.
16

Nitrous oxide and methane emissions from agriculture and approaches to mitigate greenhouse gas emissions from livestock production

Webb, J. January 2017 (has links)
This thesis links papers reporting field measurements, modelling studies and reviews of greenhouse gas (GHG) emissions and their abatement from agriculture, in particular from livestock production. The aims of the work were to: quantify GHG emissions from litter-based farmyard manures; evaluate means by which GHG emissions from agricultural production may be abated; assess synergies and conflicts between the abatement of other N pollutants on emissions of nitrous oxide (N2O); analyse two records of soil temperature from 1976-2010 from Wolverhampton (UK) and Vienna (Austria). Agricultural emissions of GHGs are not readily abated by ‘end of pipe’ technologies. Large decreases in agricultural GHG emissions may require changes in the production and consumption of food that could have unwelcome impacts on both consumers and producers. However, identifying and prioritizing both modes and locations of production, together with utilizing inputs, such as N fertilizer and livestock feeds, more efficiently can reduce GHG emissions while maintaining outputs. For example, GHG emissions from livestock production may be lessened by increasing the longevity of dairy cows, thereby decreasing the proportion of unproductive replacement animals in the dairy herd. Sourcing a larger proportion of calves from the dairy herd would decrease emissions of GHGs from beef production. The distance between the region of food production to that of consumption has relatively little impact on total GHG emissions per tonne of food product. Due to greater productivity or lesser energy inputs, importing some foods produced in other parts of the world may decrease GHG emissions per tonne compared with UK production, despite the additional emissions arising from long-distance transport. Manure application techniques to abate ammonia (NH3) emissions do not axiomatically increase emissions of N2O and may decrease them. Soil temperature measurements from 1976 to 2010 were consistent with the warming trends reported over the last 40 years.
17

Water Requirements, Use Efficiency, and Insect Infestation in Brussels Sprouts, and Nitrogen Use Efficiency in Sweet Basil under Low Tunnels compared to Open-field Production

Acharya, Tej Prasad 04 January 2019 (has links)
Sustainable vegetable production is one of the most active areas of vegetable research and of concern to all producers. Everyone, both producers and consumers, are concerned with sustainability. Brussels sprouts and sweet basil are high value commodities, but increasing global concerns about water availability, insect-pest problems, and costly fertilizer inputs severely impact the growth and production of these crops. Low tunnels covered with spun-bonded fabric can improve production of vegetables and herbs in Virginia and the U.S. This study investigated the performance of Brussels sprouts and basil grown under low tunnels (LTs), and their relationship with water use efficiency, nitrogen use efficiency, and the level of protection against insect injury. Low tunnels increased yield, number of sprouts, and water use efficiency of Brussels sprout production. In addition, LTs decreased irrigation requirements, irrigation events, leaf feeding injury, and insect populations in comparison to open field. Similarly, LTs increased summer production of sweet basil as measured by fresh weight and biomass. In addition, plant N uptake was greater under the LTs; however, the increase in nitrogen use efficiency was inconsistent. / Master of Science in Life Sciences / Brussels sprouts and sweet basil are economically important cash crops on the East Coast. Brussels sprouts is a Cole crop and an important source of dietary fiber, vitamins (A, C & K), calcium, iron, manganese and antioxidants. Similarly, sweet basil is a member of the mint family and important high-value herb in the U.S. and the world. It is mainly grown for culinary purposes as a dried and fresh spice in the U.S. However, demand for these commodities is increasing. Low tunnels (LTs) covered with spunbonded fabric can be a practical management tool to increase yield. Results from this study indicate that LTs increase yield of Brussels sprouts and basil, water use efficiency and total nitrogen uptake, while reducing insect pest infestation. Therefore, LTs can be a useful tool to improve sustainability of Brussels sprouts and basil production.
18

Produção e efeitos de biofertilizante bioprotetor com quitosana na alface

FELIX , Fabiana Ferreira 29 February 2012 (has links)
Submitted by (lucia.rodrigues@ufrpe.br) on 2016-08-02T14:01:59Z No. of bitstreams: 1 Fabiana Ferreira Felix.pdf: 754691 bytes, checksum: b26fddd7eec71d3c98c4aa2e7f77a373 (MD5) / Made available in DSpace on 2016-08-02T14:01:59Z (GMT). No. of bitstreams: 1 Fabiana Ferreira Felix.pdf: 754691 bytes, checksum: b26fddd7eec71d3c98c4aa2e7f77a373 (MD5) Previous issue date: 2012-02-29 / Nitrogen is one of the macronutrient that affects plant growth, and is usually not found on the rocks. Thus the study involving N-fixing bacteria with free living or symbiotic associations are of extreme importance for the development of agriculture. The objective of this study was to evaluate the enrichment in N of the organic matter (earthworm compound) by inoculation with free living diazotrophic bacteria and the addition of fungi chitosan adding Cunninghamella elegans that contain chitosan in their cell wall, a biopolymer that have the properties to act in the control of plant diseases. Diazotrophic bacteria were isolated from Brazilian soils and selected at the Nucleus of Biologic Nitrogen Fixation in the Tropics (NBNFT/UFRPE). The diazotrophic bacteria, were isolated in silica gel plaques and grown in liquid culture (LG medium), maintained under shaking during 15 days (± 28ºC). The biofertilizer (NPKB) and the Protector (NPKP) production were processed in laboratorial assay using plastic trays, and in field conditions in furrows at the University Federal Rural of Pernambuco Horticultural Station. In field the diazotrophic bacteria was inoculated adding 30 L of the culture medium (108 viable cells mL-1) for each 3000 kg of organic matter (earthworm compound). The fungus C. elegans was grown in potato-dextrose medium (PD) and the inoculation was processed in the same manner described for the diazotrophic bacteria. In all assays samples were collected weekly (T0, T7, T14, T21, T28, T35 e T42, after inoculation) for chemical analyzes. By the results it was observed that the time for maximum efficiency for increment of the biological N fixation by the free living diazotrophic bacteria was achieved at 35 days after inoculation and N increase up to 100% compared with the initial N (T0). The research work showed the possibility to obtain a mixed fertilizer (NPKB) with higher N rate due to the free living diazotrophic bacteria inoculation. The bioprotector (NPKP) increments the N, P and K content of the product and have potential to provide nutrients for plants. / O nitrogênio é o macronutriente mais limitante para o crescimento das plantas, e normalmente não é encontrado diretamente nas rochas. Assim o estudo com bactérias fixadoras de N sejam de vida livre, associativas ou simbióticas são de extrema importância para o desenvolvimento da agricultura. O objetivo do presente trabalho foi avaliar o enriquecimento em N na matéria orgânica (húmus de minhoca) por inoculação com bactéria diazotrófica de vida livre e adição de quitosana fúngica pelo fungo da Ordem Mucorales (Cunninghamella elegans) que possui na parede celular a quitosana, biopolímero que atua no controle de doenças de plantas. A bactéria diazotrófica de vida livre foi selecionada no Núcleo de Fixação Biológica do N2 nos Trópicos da UFRPE. As bactérias foram isoladas em placas de sílica gel, cultivadas em meio de cultura (LG líquido), e mantidas em crescimento sob agitação por 15 dias (± 28ºC). A produção do biofertilizante (BNPK) e do Bioprotetor (PNPK) foi realizada em ensaios em laboratório (bandejas) e em condições de campo usando canteiros da Horta Experimental da UFRPE. No experimento em campo na inoculação com bactéria diazotrófica de vida livre foram adicionados 30L de meio (108 células viáveis mL-1) para cada 3000 kg de matéria orgânica (Húmus de minhoca). O fungo C. elegans foi cultivado em meio batata dextrose (BD) e a inoculação feita da mesma forma descrita para o ensaio com bactéria diazotrófica. Em todos os experimentos foram coletadas amostras no início, e semanalmente, após a inoculação (T0, T7, T14, T21, T28, T35 e T42). Os resultados demonstram que o período de máxima eficiência no processo da fixação biológica de N2 pela bactéria diazotrófica é atingido aos 35 dias de incubação, com um incremento de N na faixa de 100% em comparação com o N inicial (T0). O trabalho mostra a possibilidade de obtenção de biofertilizante misto (BNPK) com maior nível de N pela inoculação com bactéria diazotrófica de vida livre. O Bioprotetor (PNPK) com quitosana fúngica (PNPK), promove aumento de N, P e K no produto e tem potencial de disponibilizar nutrientes para a planta.
19

Analyse écophysiologique et génétique de l’absorption d’azote post-floraison chez le blé tendre (Triticum aestivum L.) en relation avec la concentration en protéines des grains / Ecophysiological and genetic analysis of post-flowering nitrogen uptake in bread wheat (Triticum aestivum L.) in relation with grain protein concentration

Taulemesse, François 16 June 2015 (has links)
La concentration en protéines des grains est un critère qualitatif majeur qui conditionne la valeur économique et technologique du blé tendre (Triticum aestivum L.). Cependant, la forte relation négative existant entre concentration en protéines et rendement en grains implique que l’amélioration de la concentration en protéines par une approche génétique soit complexe à atteindre sans impacter négativement le rendement. Pour contourner cette difficulté, il a été proposé qu’une sélection variétale basée sur l’écart à cette relation négative (nommé Grain Protein Deviation ; GPD) permette d’améliorer la concentration en protéines indépendamment du rendement. Au niveau physiologique, le GPD est fortement corrélé à la capacité des génotypes à absorber de l’azote après floraison indépendamment de la quantité d’azote déjà absorbée à floraison, suggérant que la satiété en azote soit à la base de son établissement. Envisager une sélection sur la base du GPD nécessite cependant d’acquérir des connaissances approfondies des mécanismes impliqués dans la régulation de l’absorption d’azote par la satiété en azote, qui permettraient de cibler précisément des traits simples à quantifier et robustement associés à cette capacité accrue d’accumulation de protéines dans les grains.Cette étude se base sur deux expérimentations conduites en conditions contrôlées et une expérimentation au champ. Dans chacune de ces expérimentations, différents niveaux de fertilisation ont été appliqués en pré-floraison afin d’obtenir des statuts azotés contrastés à floraison. L’effet du statut azoté à floraison sur l’absorption post-floraison a ensuite été observé dans différentes conditions de disponibilités d’azote après floraison. Des mesures physiologiques et moléculaires ont été réalisées en parallèle des mesures d’absorption d’azote.Nous avons mis en évidence que l’absorption d’azote post-floraison présente une dynamique élaborée qui suppose qu’elle est soumise à des régulations complexes. Parmi celles-ci, le statut azoté des plantes à floraison conditionne en grande part la quantité d’azote absorbée dans les jours qui suivent la floraison (PANUprécoce , de floraison à floraison + 250 degrés-jour). La quantité de PANUprécoce se présente comme un déterminant fort de la concentration en protéines des grains du fait de la forte corrélation positive observée entre ces deux traits en conditions contrôlées et au champ, et ce indépendamment du niveau de rendement. L’étude de deux génotypes robustement contrastés pour le GPD a montré qu’à statuts azotés équivalents, la quantité de PANUprécoce est sujette à des effets génétiques qui tendent à confirmer l’impact de la variabilité génétique de satiété en azote sur l’établissement du GPD.Ces travaux ont permis de proposer des marqueurs du GPD potentiellement valorisables en sélection. Au niveau physiologique, la croissance des tiges après floraison se présente comme un marqueur prometteur du GPD car ce trait est fortement corrélé à la PANUprécoce. Au niveau moléculaire, la concentration en nitrates des racines, également soumise à des effets génétiques, est proposée comme marqueur potentiel du fait de son rôle probable dans la régulation expressionnelle des gènes impliqués dans l’absorption et l’assimilation d’azote. / Grain protein concentration is one of the major qualitative criteria of bread wheat (Triticum aestivum L.) economic and technological value. However, the negative relationship existing between protein concentration and grain yield implies that grain protein concentration improvement is complex to achieve without detrimental effect on grain yield. Breeding programs based on the deviation to this negative relationship (Grain protein deviation of GPD) have been proposed to be a suitable strategy to improve grain nitrogen concentration without detrimental effects on yield. At a physiological level, GPD is strongly correlated with genotypes aptitude to uptake nitrogen after flowering independently of the nitrogen amount already taken up before this stage, suggesting that satiety for nitrogen could be involved in its establishment. Breeding for GPD implies however a more detailed knowledge of the processes implied in nitrogen uptake regulation by nitrogen plant satiety. This would allow targeting traits both simple to measure and robustly associated with this increased capacity to accumulate proteins in grains.The present study is based on two experiments carried on under controlled conditions and a third led under field conditions. In all experiments, various levels of pre-flowering fertilization were applied in order to obtain contrasted plant nitrogen status at flowering. Nitrogen status effect on post-flowering nitrogen uptake was observed under various post-flowering N availability conditions. Physiological and molecular measurements were carried out in parallel with uptake measurements.We highlighted that post-flowering nitrogen uptake has an elaborate dynamic, suggesting the involvement of complex regulations. Among these, plant nitrogen status at flowering determines to a great extent the amount of nitrogen taken up during the days following flowering (early PANU, from flowering to flowering +250 °C.days-1). Early PANU appears to be a strong determinant of grain protein concentration, as strong positive correlations were observed between these two traits both under controlled conditions and field conditions, independently of grain yield level. The study of two genotypes strongly contrasted for GPD highlighted that, despite comparable N status, early PANU is subjected to strong genetic variations which tend to identify N satiety as a determinant of GPD.The present study identified robust markers of GPD of potential use in plant breeding. At a physiological level, post flowering stem elongation appears to be a promising marker of GPD since this trait is strongly correlated with early PANU. At a molecular level, root nitrate concentration, a trait submitted to genetic variations, is also proposed as a marker of GPD because of its role in the expression regulation of the genes governing nitrogen uptake and assimilation.
20

Study of Argon Shrouding in Ingot Casting, with Focus on Improving the Operation at Scana Björneborg Steel Plant

Ghazian Tafrishi, Babak January 2014 (has links)
This thesis has been carried out as a development project at Scana Steel Björneborg with the purpose to study the influential parameters in argon shrouded ingot casting during the manufacturing of low-alloy steels. In the first stage, a literature study was conducted in order to investigate the theoretical background of the procedure and the importance of protecting the melt during ingot casting. Next, a computer model of the shield was designed using COMSOL Multiphysics® with regard to the process conditions at Scana Steel Björneborg. The effect of various parameters on the process was examined through simulations of the argon gas flow pattern, heat transfer between the gas and the melt stream, and the chemical species transport in the gas around the melt stream. Based on the simulation results, two different shapes of shield were proposed for the argon shrouding operation. A set of implementation tests was executed in order to check the installation and usage conditions of the two new shields. After deciding the proper shape of the shield, a full-scale ingot-casting test was performed with the selected shield to investigate the protection behavior. Moreover, the impact of the new casting-protection shield on the nitrogen and oxygen contents of steel was examined through sampling and analyzing the steel before and after casting. It was found that the use of the new shield during the uphill ingot casting is an effective way to reduce the final nitrogen and oxygen contents of the casted ingot. Therefore, the new design of the shield can be used as a developed substitute for the protection of the melt stream in the ingot casting operation.

Page generated in 0.4617 seconds