• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 201
  • 37
  • 36
  • 25
  • 25
  • 18
  • 9
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 478
  • 129
  • 122
  • 65
  • 59
  • 56
  • 52
  • 46
  • 46
  • 43
  • 42
  • 40
  • 39
  • 39
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Crash Prediction Modeling for Curved Segments of Rural Two-Lane Two-Way Highways in Utah

Knecht, Casey Scott 01 December 2014 (has links) (PDF)
This thesis contains the results of the development of crash prediction models for curved segments of rural two-lane two-way highways in the state of Utah. The modeling effort included the calibration of the predictive model found in the Highway Safety Manual (HSM) as well as the development of Utah-specific models developed using negative binomial regression. The data for these models came from randomly sampled curved segments in Utah, with crash data coming from years 2008-2012. The total number of randomly sampled curved segments was 1,495. The HSM predictive model for rural two-lane two-way highways consists of a safety performance function (SPF), crash modification factors (CMFs), and a jurisdiction-specific calibration factor. For this research, two sample periods were used: a three-year period from 2010 to 2012 and a five-year period from 2008 to 2012. The calibration factor for the HSM predictive model was determined to be 1.50 for the three-year period and 1.60 for the five-year period. These factors are to be used in conjunction with the HSM SPF and all applicable CMFs. A negative binomial model was used to develop Utah-specific crash prediction models based on both the three-year and five-year sample periods. A backward stepwise regression technique was used to isolate the variables that would significantly affect highway safety. The independent variables used for negative binomial regression included the same set of variables used in the HSM predictive model along with other variables such as speed limit and truck traffic that were considered to have a significant effect on potential crash occurrence. The significant variables at the 95 percent confidence level were found to be average annual daily traffic, segment length, total truck percentage, and curve radius. The main benefit of the Utah-specific crash prediction models is that they provide a reasonable level of accuracy for crash prediction yet only require four variables, thus requiring much less effort in data collection compared to using the HSM predictive model.
362

Safety Effectiveness of Conversion of Two-Way-Left-Turn Lanes into Raised Medians

Alarifi, Saif 01 January 2014 (has links)
Two way left turn lanes (TWLTL) and raised medians are common median treatments on roadways. This research focused on evaluating the safety effectiveness of conversion of TWLTLs into raised medians using Before-After and Cross Sectional Studies. In the Before-After Studies, we evaluated the effect of this treatment using the Naive, Before-After with Comparison Group (CG), and Before-After with Empirical Bayes (EB) Methods. In order to apply these methods, a total of 33 segments of a treated group and 109 segments of a comparison group have been collected. Also, safety performance functions (SPFs) have been developed using the negative binomial model in order to calibrate crash modification factors (CMF) using the Before-After with Empirical Bayes Method. This research also evaluated the safety effectiveness of this treatment on four and six lane roads using Before-After with CG and Before-After with EB. The type of raised medians was further evaluated using Before-After with CG and EB. In sum, the results from this study show that applying the before-After and Cross Sectional studies have proved that the conversion from a TWLTL to a raised median helped to reduce total, fatal and injury, head on, angle, and left turn crashes. It significantly reduces crashes for head-on and left turn crashes, by restricting turning maneuvers. Also, this study has proved that the treatment is more effective on four rather than six lane roads. Furthermore, two types of raised medians, concrete and lawn curb, were evaluated after the conversion from TWLTLs. It was found that both medians have similar effects due to the conversion, and both median types helped in reducing the number of crashes.
363

Assessing Crash Occurrence On Urban Freeways Using Static And Dynamic Factors By Applying A System Of Interrelated Equations

Pemmanaboina, Rajashekar 01 January 2005 (has links)
Traffic crashes have been identified as one of the main causes of death in the US, making road safety a high priority issue that needs urgent attention. Recognizing the fact that more and effective research has to be done in this area, this thesis aims mainly at developing different statistical models related to the road safety. The thesis includes three main sections: 1) overall crash frequency analysis using negative binomial models, 2) seemingly unrelated negative binomial (SUNB) models for different categories of crashes divided based on type of crash, or condition in which they occur, 3) safety models to determine the probability of crash occurrence, including a rainfall index that has been estimated using a logistic regression model. The study corridor is a 36.25 mile stretch of Interstate 4 in Central Florida. For the first two sections, crash cases from 1999 through 2002 were considered. Conventionally most of the crash frequency analysis model all crashes, instead of dividing them based on type of crash, peaking conditions, availability of light, severity, or pavement condition, etc. Also researchers traditionally used AADT to represent traffic volumes in their models. These two cases are examples of macroscopic crash frequency modeling. To investigate the microscopic models, and to identify the significant factors related to crash occurrence, a preliminary study (first analysis) explored the use of microscopic traffic volumes related to crash occurrence by comparing AADT/VMT with five to twenty minute volumes immediately preceding the crash. It was found that the volumes just before the time of crash occurrence proved to be a better predictor of crash frequency than AADT. The results also showed that road curvature, median type, number of lanes, pavement surface type and presence of on/off-ramps are among the significant factors that contribute to crash occurrence. In the second analysis various possible crash categories were prepared to exactly identify the factors related to them, using various roadway, geometric, and microscopic traffic variables. Five different categories are prepared based on a common platform, e.g. type of crash. They are: 1) Multiple and Single vehicle crashes, 2) Peak and Off-peak crashes, 3) Dry and Wet pavement crashes, 4) Daytime and Dark hour crashes, and 5) Property Damage Only (PDO) and Injury crashes. Each of the above mentioned models in each category are estimated separately. To account for the correlation between the disturbance terms arising from omitted variables between any two models in a category, seemingly unrelated negative binomial (SUNB) regression was used, and then the models in each category were estimated simultaneously. SUNB estimation proved to be advantageous for two categories: Category 1, and Category 4. Road curvature and presence of On-ramps/Off-ramps were found to be the important factors, which can be related to every crash category. AADT was also found to be significant in all the models except for the single vehicle crash model. Median type and pavement surface type were among the other important factors causing crashes. It can be stated that the group of factors found in the model considering all crashes is a superset of the factors that were found in individual crash categories. The third analysis dealt with the development of a logistic regression model to obtain the weather condition at a given time and location on I-4 in Central Florida so that this information can be used in traffic safety analyses, because of the lack of weather monitoring stations in the study area. To prove the worthiness of the weather information obtained form the analysis, the same weather information was used in a safety model developed by Abdel-Aty et al., 2004. It was also proved that the inclusion of weather information actually improved the safety model with better prediction accuracy.
364

Driving Simulator Validation And Rear-end Crash Risk Analysis At A Signalised Intersection

Chilakapati, Praveen 01 January 2006 (has links)
In recent years the use of advanced driving simulators has increased in the transportation engineering field especially in evaluating safety countermeasures. The driving simulator at UCF is a high fidelity simulator with six degrees of freedom. This research aims at validating the simulator in terms of speed and safety with the intention of using it as a test bed for high risk locations and to use it in developing traffic safety countermeasures. The Simulator replicates a real world signalized intersection (Alafaya trail (SR-434) and Colonial Drive (SR-50)). A total of sixty one subjects of age ranging from sixteen to sixty years were recruited to drive the simulator for the experiment, which consists of eight scenarios. This research validates the driving simulator for speed, safety and visual aspects. Based on the overall comparisons of speed between the simulated results and the real world, it was concluded that the UCF driving simulator is a valid tool for traffic studies related to driving speed behavior. Based on statistical analysis conducted on the experiment results, it is concluded that SR-434 northbound right turn lane and SR-50 eastbound through lanes have a higher rear-end crash risk than that at SR-50 westbound right turn lane and SR-434 northbound through lanes, respectively. This conforms to the risk of rear-end crashes observed at the actual intersection. Therefore, the simulator is validated for using it as an effective tool for traffic safety studies to test high-risk intersection locations. The driving simulator is also validated for physical and visual aspects of the intersection as 87.10% of the subjects recognized the intersection and were of the opinion that the replicated intersection was good enough or realistic. A binary logistic regression model was estimated and was used to quantify the relative rear-end crash risk at through lanes. It was found that in terms of rear-end crash risk SR50 east- bound approach is 23.67% riskier than the SR434 north-bound approach.
365

Efficient Generation of Standard Customer Reports for Airbag Simulation Results

Jayanthi, Sagar 02 November 2023 (has links)
Passive safety systems like airbags have significantly improved road safety. These occupant safety systems help in reducing the severity of injuries, and save lives in the event of a road accident. The airbag systems must be configured correctly to minimize the impact of collision and protect the occupants. To configure the airbag, test crashes are performed and data is recorded. This data is simulated to find out appropriate parameters for the airbag deployment. The airbag simulation results are stored into databases. Airbag application tools are used to handle the data stored in databases. The airbag simulation results must be extracted efficiently and required computations needs to be performed. This data is then stored to reports. RSDBnext is an airbag application tool, it stands for Result Database next generation. This tool is used for extraction of data from the database. The RSDBnext tool should be adapted to generate Standard Customer Reports. These reports are to be generated based on customer requirements. The existing methodology to generate Standard Customer Reports used Excel macros, which took a lot of time to generate the reports. This method was complex and unstable. Hence, a new methodology was proposed without using macros. In the proposed method, an XML file and XSLT StyleSheet were used to generate the report in Excel using C# with Visual Studio. This approach reduces report generation time, and overcomes the drawbacks of the previous approach. From the results, this methodology to generate reports is faster, easier, and more reliable.
366

Visualization of Crash Channel Assignments in a Tabular Form

Parthanarayanasingh, Krishna Pooja 02 November 2023 (has links)
Passive safety systems try to lessen the effects of an accident. Airbags are a passive safety feature. They are designed to protect occupants of a vehicle during a crash. These systems have to be configured correctly in order to deploy airbags at the right time in case of a collision. Airbag application tools are used to simulate and interpret crashes. Some factors influence when an airbag should deploy. Based on different parameters, the logic for firing airbags is also different. Under every circumstance, an airbag has to be deployed at the right time in order to prevent injuries and fatalities. During the process of simulation, the data which is simulated is written to a database. During interpretation, this data is extracted from the database. Then, the required information can be analyzed and interpreted for further use. This data contains crash related information. For example, the type of crash, crash code and crash channel assignments. For every crash present in the airbag project, crash channels are assigned to the sensors. Each sensor present has a crash channel assigned to it. This is called the crash channel assignment. An airbag application tool is developed to show the crash channel assignments. This tool should handle the information extraction, and visualization of crash channel assignments. The final output should be in a tabular format, which includes user specific customizations.
367

Crash Risk Analysis of Coordinated Signalized Intersections

Qiming Guo (17582769) 08 December 2023 (has links)
<p dir="ltr">The emergence of time-dependent data provides researchers with unparalleled opportunities to investigate disaggregated levels of safety performance on roadway infrastructures. A disaggregated crash risk analysis uses both time-dependent data (e.g., hourly traffic, speed, weather conditions and signal controls) and fixed data (e.g., geometry) to estimate hourly crash probability. Despite abundant research on crash risk analysis, coordinated signalized intersections continue to require further investigation due to both the complexity of the safety problem and the relatively small number of past studies that investigated the risk factors of coordinated signalized intersections. This dissertation aimed to develop robust crash risk prediction models to better understand the risk factors of coordinated signalized intersections and to identify practical safety countermeasures. The crashes first were categorized into three types (same-direction, opposite-direction, and right-angle) within several crash-generating scenarios. The data needed were organized in hourly observations and included the following factors: road geometric features, traffic movement volumes, speeds, weather precipitation and temperature, and signal control settings. Assembling hourly observations for modeling crash risk was achieved by synchronizing and linking data sources organized at different time resolutions. Three different non-crash sampling strategies were applied to the following three statistical models (Conditional Logit, Firth Logit, and Mixed Logit) and two machine learning models (Random Forest and Penalized Support Vector Machine). Important risk factors, such as the presence of light rain, traffic volume, speed variability, and vehicle arrival pattern of downstream, were identified. The Firth Logit model was selected for implementation to signal coordination practice. This model turned out to be most robust based on its out-of-sample prediction performance and its inclusion of important risk factors. The implementation examples of the recommended crash risk model to building daily risk profiles and to estimating the safety benefits of improved coordination plans demonstrated the model’s practicality and usefulness in improving safety at coordinated signals by practicing engineers.</p>
368

Lower Extremity Anthropometry, Range of Motion, and Stiffness in Children and the Application for Modification and Validation of the Anthropomorphic Test Device

Boucher, Laura C. 18 September 2014 (has links)
No description available.
369

Injury Mechanisms and Outcomes in Lead Vehicle Stopped, Near Side, and Lane Change-Related Impacts: Implications for Autonomous Vehicle Behavior Design

Eichaker, Lauren R. January 2017 (has links)
No description available.
370

Analysis of Factors Affecting Crash Severity of Pedestrian and Bicycle Crashes Involving Vehicles at Intersections

Alshehri, Abdulaziz Hebni 20 December 2017 (has links)
No description available.

Page generated in 0.0262 seconds