• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 201
  • 37
  • 36
  • 25
  • 25
  • 17
  • 9
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 475
  • 127
  • 121
  • 65
  • 58
  • 56
  • 51
  • 46
  • 45
  • 42
  • 42
  • 40
  • 39
  • 39
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Rozvoj metodiky posuzování svodidel z hlediska dynamických účinků / Development of methods for analysys road safety barriers in terms of dynamic effects

Koudelka, Ivan January 2015 (has links)
The presented work analyses the methodology and approach of the legislation. It presents in the press presented results of numerical modelling of the impact of vehicles crashed into barriers that are being solved in the Czech Republic and worldwide. It presents a recommendation of a methodology for assessing crash barriers. The methodology follows the basic principles used in the TP 101 and EN 1991-1-1. The kinetic energy of the vehicle at the moment of impact is replaced with substitute static force, whose effects are comparable with those of a vehicle collision. The supporting structure of crash barriers is implemented in compliance with means of statics. The calculation includes the vehicle deformation, which represents the real distribution of the energy absorbed by the deformation of the vehicle and the energy that crash barriers need to absorb. The proposed methods allow to take into account non-linear behaviour of the structure both in terms of geometry and in terms of material nonlinearity. The work also deals with the interpretation of various types of support structures in the computational model. A specific case is used for a demonstration of a way of modelling the elastic supporting column of crash barriers in the soil, or modelling the friction of a loose concrete block over the surface. To ensure the proper position of interconnected loose blocks corresponding to the reality, a method of modelling the place of a possible contact of the breakthrough is drafted. A significant contribution to the more accurate calculation is achieved by sequential increase of the load on the construction by using load increment and measurement of energy increases absorbed by the deformation in each step. The presented methodology is an effective tool to assess crash barriers. For the application of this tool, using common resources and facilities available to almost every designer dealing with statics of structures is sufficient. In conclusion, the knowledge obtained fr
352

Development of Safety Performance Functions For Two-Lane Rural Highways in the State of Ohio

Faden, Abdulrahman Khalid 29 June 2020 (has links)
No description available.
353

Development of Advanced Numerical Tools for Aircraft Crash Analysis

Ding, Menglong 25 August 2020 (has links)
No description available.
354

Modeling, Simulation and Optimization Approaches for Design of Lightweight Car Body Structures

Kiani, Morteza 17 August 2013 (has links)
Simulation-based design optimization and finite element method are used in this research to investigate weight reduction of car body structures made of metallic and composite materials under different design criteria. Besides crashworthiness in full frontal, offset frontal, and side impact scenarios, vibration frequencies, static stiffness, and joint rigidity are also considered. Energy absorption at the component level is used to study the effectiveness of carbon fiber reinforced polymer (CFRP) composite material with consideration of different failure criteria. A global-local design strategy is introduced and applied to multi-objective optimization of car body structures with CFRP components. Multiple example problems involving the analysis of full-vehicle crash and body-in-white models are used to examine the effect of material substitution and the choice of design criteria on weight reduction. The results of this study show that car body structures that are optimized for crashworthiness alone may not meet the vibration criterion. Moreover, optimized car body structures with CFRP components can be lighter with superior crashworthiness than the baseline and optimized metallic structures.
355

A Quantitative Analysis of the Impacts from Selected Climate Variables Upon Traffic Safety in Massachusetts

Hecimovic, Katrina M. 01 January 2012 (has links) (PDF)
Current literature predicts that climate change may increase both the occurrence and severity of heavy rainfall events and winter precipitation in the Northeast United States. A potential increase in intense precipitation events related to climate change would theoretically also cause an increase in weather-related delays, increase in overall traffic disruptions, a substantive shift in travel behavior, and presumably a negative effect on safety and maintenance operations of highways. This current research study examines the existing impacts from both an operational and behavioral perspective of how weather events currently impact overall safety along routes in Massachusetts. A secondary objective of the research effort is to evaluate the extent to which this information is captured on the crash report form for subsequent use in safety analyses. Utilizing data from Massachusetts Department of Transportation, National Climatic Data Center (NCDC) and the University of Massachusetts Data Warehouse, crash statistics were examined during varied levels of weather events and compared with non-weather conditions. In addition, crash report forms were analyzed in comparison to NCDC weather data to determine the correlation between of the weather specific fields of the reports and to help determine if crashes were weather-related. The results from the investigation show how the character of precipitation events impact traffic safety including both occurrence and intensity levels and in conjunction with existing weather predictions the relationships developed in this study are useful in evaluating how changes in extreme precipitation events projected for the Northeast may impact drivers’ safety in the future.
356

Challenges and Opportunities in Cycling Safety in Nairobi City, Kenya

Oyoo, Robert O., Mwea, S. K. 28 December 2022 (has links)
The road transport in Kenya is the most common means oftransport for people living in both urban and rural areas. The use of bicycles for transport dates back in the pre-colonial time and has been used as a mode of transport until 2008 when the use of motorcycles became a popular mode of travel in the rural and urban areas. However, the use of bicycle as a means of travel has declined consistently over the years until now and many have shifted to the use of car, public transport and most commonly motorcycles which are popularly known as 'boda boda' in Kenya. This modal shift can be attributed to a number of factors identified as challenges in the use of bicycles as a common mode of transport in comparison to other emerging modes of transport both in rural and urban areas. However, despite this modal shift, there are a substantial number of road users who would still prefer to use the bicycle mode amid prevalence in road traffic fatalities and injuries in Kenya. The government of Kenya has established initiatives to provide safe and inclusive transport system by investing in transport infrastructure that includes cycle tracks especially for roads located in the urban cities. This has been enabled by innovation in design, mixed traffic composition, change of legislation and road design standards especially in regards to non-motorized transport in Kenya. Cycling is still low in cities in Kenya despite this effort to improve geometric design of roads. This paper explores these challenges and opportunities in cycling in Kenya focusing on Nairobi city as a case study. [From: Introduction]
357

Crashes in the Vicinity of Major Crossroads

Allen, Charles G. 20 November 2008 (has links) (PDF)
Major crossroads are designed to facilitate the conflicting movements of numerous vehicles in a manner that is both safe and efficient. Accesses located within the functional areas of major crossroads add complication to intersection activity due to additional conflicts arising from ingressing and egressing movements at the accesses. In this research, the impact of accesses on crashes within major crossroad functional areas was analyzed. Specifically, the effects of access spacing within functional areas and access setback from intersections were addressed. In order to conduct the analysis, the functional areas of 159 signalized major arterial crossroads across the state of Utah were examined. A database was built containing the frequency, type, and severity of functional area crashes as well as the intersection and roadway characteristics within the functional area. Statistical analyses were conducted to determine the influence of accesses in intersection functional areas on functional area crashes. The statistical analyses show that the existence of accesses within the functional areas was correlated with increased crashes and crash severity costs. In particular, an increase in commercial access density was associated with increases in crash totals, crash rates, and rear end crashes in intersection functional areas. The analyses also showed that study site intersections meeting Utah Department of Transportation (UDOT) corner clearance standards exhibited fewer right angle crashes and lower crash severity costs. Finally, intersections that prohibited all unsignalized access had lower crash totals, crash rates, right angle crash totals, and rear end crash totals than intersections that allowed some unsignalized access.
358

Calibration of the Highway Safety Manual Safety Performance Function and Development of Jurisdiction-Specific Models for Rural Two-Lane Two-Way Roads in Utah

Brimley, Bradford Keith 17 March 2011 (has links) (PDF)
This thesis documents the results of the calibration of the Highway Safety Manual (HSM) safety performance function (SPF) for rural two-lane two-way roadway segments in Utah and the development of new SPFs using negative binomial and hierarchical Bayesian modeling techniques. SPFs estimate the safety of a roadway entity, such as a segment or intersection, in terms of number of crashes. The new SPFs were developed for comparison to the calibrated HSM SPF. This research was performed for the Utah Department of Transportation (UDOT).The study area was the state of Utah. Crash data from 2005-2007 on 157 selected study segments provided a 3-year observed crash frequency to obtain a calibration factor for the HSM SPF and develop new SPFs. The calibration factor for the HSM SPF for rural two-lane two-way roads in Utah is 1.16. This indicates that the HSM underpredicts the number of crashes on rural two-lane two-way roads in Utah by sixteen percent. The new SPFs were developed from the same data that were collected for the HSM calibration, with the addition of new data variables that were hypothesized to have a significant effect on crash frequencies. Negative binomial regression was used to develop four new SPFs, and one additional SPF was developed using hierarchical (or full) Bayesian techniques. The empirical Bayes (EB) method can be applied with each negative binomial SPF because the models include an overdispersion parameter used with the EB method. The hierarchical Bayesian technique is a newer, more mathematically-intense method that accounts for high levels of uncertainty often present in crash modeling. Because the hierarchical Bayesian SPF produces a density function of a predicted crash frequency, a comparison of this density function with an observed crash frequency can help identify segments with significant safety concerns. Each SPF has its own strengths and weaknesses, which include its data requirements and predicting capability. This thesis recommends that UDOT use Equation 5-11 (a new negative binomial SPF) for predicting crashes, because it predicts crashes with reasonable accuracy while requiring much less data than other models. The hierarchical Bayesian process should be used for evaluating observed crash frequencies to identify segments that may benefit from roadway safety improvements.
359

Crash Prediction Modeling for Curved Segments of Rural Two-Lane Two-Way Highways in Utah

Knecht, Casey Scott 01 December 2014 (has links) (PDF)
This thesis contains the results of the development of crash prediction models for curved segments of rural two-lane two-way highways in the state of Utah. The modeling effort included the calibration of the predictive model found in the Highway Safety Manual (HSM) as well as the development of Utah-specific models developed using negative binomial regression. The data for these models came from randomly sampled curved segments in Utah, with crash data coming from years 2008-2012. The total number of randomly sampled curved segments was 1,495. The HSM predictive model for rural two-lane two-way highways consists of a safety performance function (SPF), crash modification factors (CMFs), and a jurisdiction-specific calibration factor. For this research, two sample periods were used: a three-year period from 2010 to 2012 and a five-year period from 2008 to 2012. The calibration factor for the HSM predictive model was determined to be 1.50 for the three-year period and 1.60 for the five-year period. These factors are to be used in conjunction with the HSM SPF and all applicable CMFs. A negative binomial model was used to develop Utah-specific crash prediction models based on both the three-year and five-year sample periods. A backward stepwise regression technique was used to isolate the variables that would significantly affect highway safety. The independent variables used for negative binomial regression included the same set of variables used in the HSM predictive model along with other variables such as speed limit and truck traffic that were considered to have a significant effect on potential crash occurrence. The significant variables at the 95 percent confidence level were found to be average annual daily traffic, segment length, total truck percentage, and curve radius. The main benefit of the Utah-specific crash prediction models is that they provide a reasonable level of accuracy for crash prediction yet only require four variables, thus requiring much less effort in data collection compared to using the HSM predictive model.
360

Safety Effectiveness of Conversion of Two-Way-Left-Turn Lanes into Raised Medians

Alarifi, Saif 01 January 2014 (has links)
Two way left turn lanes (TWLTL) and raised medians are common median treatments on roadways. This research focused on evaluating the safety effectiveness of conversion of TWLTLs into raised medians using Before-After and Cross Sectional Studies. In the Before-After Studies, we evaluated the effect of this treatment using the Naive, Before-After with Comparison Group (CG), and Before-After with Empirical Bayes (EB) Methods. In order to apply these methods, a total of 33 segments of a treated group and 109 segments of a comparison group have been collected. Also, safety performance functions (SPFs) have been developed using the negative binomial model in order to calibrate crash modification factors (CMF) using the Before-After with Empirical Bayes Method. This research also evaluated the safety effectiveness of this treatment on four and six lane roads using Before-After with CG and Before-After with EB. The type of raised medians was further evaluated using Before-After with CG and EB. In sum, the results from this study show that applying the before-After and Cross Sectional studies have proved that the conversion from a TWLTL to a raised median helped to reduce total, fatal and injury, head on, angle, and left turn crashes. It significantly reduces crashes for head-on and left turn crashes, by restricting turning maneuvers. Also, this study has proved that the treatment is more effective on four rather than six lane roads. Furthermore, two types of raised medians, concrete and lawn curb, were evaluated after the conversion from TWLTLs. It was found that both medians have similar effects due to the conversion, and both median types helped in reducing the number of crashes.

Page generated in 0.5386 seconds