• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 40
  • 11
  • Tagged with
  • 165
  • 120
  • 41
  • 38
  • 36
  • 36
  • 34
  • 34
  • 30
  • 27
  • 26
  • 26
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Structuration de collections d'images par apprentissage actif crédibiliste

Goëau, Hervé 25 May 2009 (has links) (PDF)
L'indexation des images est une étape indispensable pour valoriser un fond d'archive professionnel ou des collections d'images personnelles. Le "documentaliste" se doit de décrire précisément chaque document collecté dans la perspective de le retrouver. La difficulté est alors d'interpréter les contenus visuels et de les associer entre eux afin de couvrir différentes catégories qui peuvent être souvent très subjectives. Dans ce travail, nous nous inspirons du principe de l'apprentissage actif pour aider un utilisateur dans cette tâche de structuration de collections d'images. A partir de l'analyse des contenus visuels des images, différentes stratégies de sélection active sont développées afin d'aider un utilisateur à identifier et cerner des catégories pertinentes selon son point de vue. Nous proposons d'exprimer ce problème de classification d'images avec apprentissage actif dans le cadre du Modèle des Croyances Transférables (MCT). Ce formalisme facilite la combinaison, la révision et la représentation des connaissances que l'on peut extraire des images et des classes existantes à un moment donné. La méthode proposée dans ce cadre permet ainsi une représentation détaillée de la connaissance, notamment en représentant explicitement les cas d'appartenances à aucune ou à de multiples catégories, tout en quantifiant l'incertitude (liée entre autre au fossé sémantique) et le conflit entrainé par l'analyse des images selon différentes modalités (couleurs, orientations). Une interface homme-machine a été développée afin de valider notre approche sur des jeux de tests de référence, des collections d'images personnelles et des photographies professionnelles issues de l'Institut National de l'Audiovisuel. Une évaluation a été conduite auprès d'utilisateurs professionnels et a montré des résultats très positifs en termes d'utilité, d'utilisabilité et de satisfaction.
52

Structures arborescentes et apprentissage automatique

Tommasi, Marc 23 November 2006 (has links) (PDF)
Le programme de recherches présenté dans cette synthèse s'inscrit dans la double problématique de l'étude des langages d'arbres et de l'apprentissage automatique à partir de données arborescentes. <br /> À la base de ce travail se trouve la question de l'accès et de la manipulation automatique d'informations au format XML au sein d'un réseau d'applications réparties dans internet. La réalisation de ces applications est toujours du ressort de programmeurs spécialistes d'XML et reste hors de portée de l'utilisateur final. De plus, les développements récents d'internet poursuivent l'objectif d'automatiser les communications entre applications s'échangeant des flux de données XML. Le recours à des techniques d'apprentissage automatique est une réponse possible à cette situation. <br /> Nous considèrons que les informations sont décrites dans un langage XML, et dans la perspective de ce mémoire, embarquées dans des données structurées sous forme arborescente. Les applications sont basées alors sur des opérations élémentaires que sont l'interrogation ou les requêtes dans ces documents arborescents ou encore la transformation de tels documents. <br /> Nous abordons alors la question sous l'angle de la réalisation automatique de programmes d'annotation d'arbres, permettant de dériver des procédures de transformation ou d'exécution de requêtes. Le mémoire décrit les contributions apportées pour la manipulation et l'apprentissage d'ensembles d'arbres d'arité non bornée (comme le sont les arbres XML), et l'annotation par des méthodes de classification supervisée ou d'inférence statistique.
53

Modélisation et classification des données de grande dimension : application à l'analyse d'images.

Bouveyron, Charles 28 September 2006 (has links) (PDF)
Le thème principal d'étude de cette thèse est la modélisation et la classification des données de grande<br />dimension. Partant du postulat que les données de grande dimension vivent dans des sous-espaces de<br />dimensions intrinsèques inférieures à la dimension de l'espace original et que les données de classes<br />différentes vivent dans des sous-espaces différents dont les dimensions intrinsèques peuvent être aussi<br />différentes, nous proposons une re-paramétrisation du modèle de mélange gaussien. En forçant certains<br />paramètres à être communs dans une même classe ou entre les classes, nous exhibons une famille de 28 modèles gaussiens adaptés aux données de grande dimension, allant du modèle le plus général au modèle le plus parcimonieux. Ces modèles gaussiens sont ensuite utilisés pour la discrimination et la classification<br />automatique de données de grande dimension. Les classifieurs associés à ces modèles sont baptisés respectivement High Dimensional Discriminant Analysis (HDDA) et High Dimensional Data Clustering (HDDC) et<br />leur construction se base sur l'estimation par la méthode du maximum de vraisemblance des paramètres du<br />modèle. La nature de notre re-paramétrisation permet aux méthodes HDDA et HDDC de ne pas être perturbées par le mauvais conditionnement ou la singularité des matrices de covariance empiriques des classes et d'être<br />efficaces en terme de temps de calcul. Les méthodes HDDA et HDDC sont ensuite mises en dans le cadre d'une<br />approche probabiliste de la reconnaissance d'objets dans des images. Cette approche, qui peut être<br />supervisée ou faiblement supervisée, permet de localiser de manière probabiliste un objet dans une<br />nouvelle image. Notre approche est validée sur des bases d'images récentes et comparée aux meilleures<br />méthodes actuelles de reconnaissance d'objets.
54

Learning during search

Arbelaez Rodriguez, Alejandro 31 May 2011 (has links) (PDF)
La recherche autonome est un nouveau domaine d'intérêt de la programmation par contraintes, motivé par l'importance reconnue de l'utilisation de l'apprentissage automatique pour le problème de sélection de l'algorithme le plus approprié pour une instance donnée, avec une variété d'applications, par exemple: Planification, Configuration d'horaires, etc. En général, la recherche autonome a pour but le développement d'outils automatiques pour améliorer la performance d'algorithmes de recherche, e.g., trouver la meilleure configuration des paramètres pour un algorithme de résolution d'un problème combinatoire. Cette thèse présente l'étude de trois points de vue pour l'automatisation de la résolution de problèmes combinatoires; en particulier, les problèmes de satisfaction de contraintes, les problèmes d'optimisation de combinatoire, et les problèmes de satisfiabilité (SAT).Tout d'abord, nous présentons domFD, une nouvelle heuristique pour le choix de variable, dont l'objectif est de calculer une forme simplifiée de dépendance fonctionnelle, appelée dépendance-relaxée. Ces dépendances-relaxées sont utilisées pour guider l'algorithme de recherche à chaque point de décision.Ensuite, nous révisons la méthode traditionnelle pour construire un portefeuille d'algorithmes pour le problème de la prédiction de la structure des protéines. Nous proposons un nouveau paradigme de recherche-perpétuelle dont l'objectif est de permettre à l'utilisateur d'obtenir la meilleure performance de son moteur de résolution de contraintes. La recherche-perpétuelle utilise deux modes opératoires: le mode d'exploitation utilise le modèle en cours pour solutionner les instances de l'utilisateur; le mode d'exploration réutilise ces instances pour s'entraîner et améliorer la qualité d'un modèle d'heuristiques par le biais de l'apprentissage automatique. Cette deuxième phase est exécutée quand l'unité de calcul est disponible (idle-time). Finalement, la dernière partie de cette thèse considère l'ajout de la coopération au cours d'exécution d'algorithmes de recherche locale parallèle. De cette façon, on montre que si on partage la meilleure configuration de chaque algorithme dans un portefeuille parallèle, la performance globale peut être considérablement amélioré.
55

Nouvelle approche d'identification dans les bases de données biométriques basée sur une classification non supervisée

Chaari, Anis 06 October 2009 (has links) (PDF)
Les travaux effectués dans le cadre de cette thèse portent sur l'identification automatique de visages dans des bases de données d'images numériques. L'objectif est de simplifier le déroulement de l'identification biométrique qui consiste à la recherche de l'identité requête parmi l'ensemble des individus de la base de données préenregistrée, appelée aussi galerie. En effet, le schéma d'identification classique est complexe et très coûteux notamment dans le cas de grandes bases de données biométriques. Le processus original que nous proposons ici a pour objectif de réduire la complexité et d'améliorer les performances en terme de temps de calcul et de taux d'identification. Dans ce cadre biométrique, nous avons proposé une étape de classification non supervisée ou clustering des visages pour partitionner la base d'images en plusieurs sous ensembles cohérents et bien discriminés. Pour ce faire, l'algorithme de clustering vise à extraire, pour chaque visage, un ensemble de descripteurs, appelé signature, qui lui soit spécifique. Trois techniques de représentation faciales ont été développées dans le but d'extraire des informations différentes et complémentaires décrivant le visage humain : deux méthodes factorielles d'analyse multidimensionnelle et de projection des données (méthodes dites « Eigenfaces » et « Fisherfaces ») ainsi qu'une méthode d'extraction des moments géométriques de Zernike. Sur la base des différentes classes de signatures extraites pour chaque visage plusieurs méthodes de clustering sont mises en compétition afin de dégager la classification optimale qui conduit à une meilleure réduction de la galerie. Les méthodes retenues sont, soit de type « centres mobiles » telles que les K-moyennes et les centres mobiles de Forgy, ou de type « agglomérative » telle que la méthode de BIRCH. Sur la base de la dépendance des partitions générées, ces différentes stratégies classificatoires sont ensuite combinées suivant une architecture parallèle de manière à optimiser la réduction de l'espace de recherche à un sous ensemble de la base de données. Les clusters retenus in fine étant ceux pour lesquels la probabilité d'appartenance de l'identité requête est quasi certaine.
56

Contributions à la modélisation et la commande des réseaux de trafic routier

Dimon, Catalin 24 February 2012 (has links) (PDF)
Les principaux objectifs de la thèse sont de proposer des modèles dynamiques pour décrire la circulation routière en adaptant des modèles de la mécanique des fluides et à partir de ces modèles de concevoir et mettre en œuvre des algorithmes de contrôle. La circulation routière est considérée comme un système complexe organisé dans une structure décentralisée à trois niveaux: au plus haut niveau il y a le réseau routier, décomposé, au niveau suivant, en objets routiers (tronçons et intersections), aussi décomposés, au dernier niveau, en éléments (segments) routiers.La thèse est organisée en six chapitres. Le premier chapitre présente les problèmes spécifiques aux réseaux de circulation routière, ainsi que des modèles et des algorithmes de contrôle trouvés dans la littérature. Le deuxième chapitre présente les principaux outils nécessaires pour décrire un modèle de trafic macroscopique et des façons pour représenter le flux de véhicules. Dans le troisième chapitre, des modèles dynamiques sont proposés pour différents segments et tronçons routiers. Le quatrième chapitre est consacré à la conception d'algorithmes pour le contrôle du trafic et l'optimisation de la circulation, y compris une analyse de robustesse pour évaluer la tolérance du système aux non-linéarités du modèle. Le cinquième chapitre présente une stratégie de contrôle pour le réseau routier, en utilisant la représentation par des modèles à compartiments et le concept de dynamique positive. Dans le dernier chapitre de la thèse, les contributions de l'auteur sont mises en évidence et quelques perspectives pour le développement ultérieur de la recherche sont présentées
57

Sur la définition et la reconnaissance des formes planes dans les images numériques

Musé, Pablo 01 October 2004 (has links) (PDF)
Cette thèse traite de la reconnaissance des formes dans les images numériques. Une représentation appropriée des formes est déduite de l'analyse des perturbations qui n'affectent pas la reconnaissance : changement de contraste, occlusion partielle, bruit, perspective. Les atomes de cette représentation, appelés "éléments de forme", fournissent des descriptions semi-locales des formes. L'appariement de ces éléments permet de reconnaitre des formes partielles. Les formes globales sont alors définies comme des groupes de formes partielles présentant une cohérence dans leur disposition spatiale. L'aspect fondamental de ce travail est la mise en place de seuils non-supervisés, à tous les niveaux de décision du processus de reconnaissance. Nous proposons des règles de décision pour la en correcpondance de formes partielles ainsi que pour la détection de formes globales. Le cadre proposé est basé sur une méthodologie générale de la détection dans laquelle un événement est significatif s'il n'est pas susceptible d'arriver par hasard.
58

Apprentissage de vote de majorité pour la classification supervisée et l'adaptation de domaine : approches PAC-Bayésiennes et combinaison de similarités

Morvant, Emilie 18 September 2013 (has links) (PDF)
De nos jours, avec l'expansion d'Internet, l'abondance et la diversité des données accessibles qui en résulte, de nombreuses applications requièrent l'utilisation de méthodes d'apprentissage automatique supervisé capables de prendre en considération différentes sources d'informations. Par exemple, pour des applications relevant de l'indexation sémantique de documents multimédia, il s'agit de pouvoir efficacement tirer bénéfice d'informations liées à la couleur, au texte, à la texture ou au son des documents à traiter. La plupart des méthodes existantes proposent de combiner ces informations multimodales, soit en fusionnant directement les descriptions, soit en combinant des similarités ou des classifieurs, avec pour objectif de construire un modèle de classification automatique plus fiable pour la tâche visée. Ces aspects multimodaux induisent généralement deux types de difficultés. D'une part, il faut être capable d'utiliser au mieux toute l'information a priori disponible sur les objets à combiner. D'autre part, les données sur lesquelles le modèle doit être appliqué ne suivent nécessairement pas la même distribution de probabilité que les données utilisées lors de la phase d'apprentissage. Dans ce contexte, il faut être à même d'adapter le modèle à de nouvelles données, ce qui relève de l'adaptation de domaine. Dans cette thèse, nous proposons plusieurs contributions fondées théoriquement et répondant à ces problématiques. Une première série de contributions s'intéresse à l'apprentissage de votes de majorité pondérés sur un ensemble de votants dans le cadre de la classification supervisée. Ces contributions s'inscrivent dans le contexte de la théorie PAC-Bayésienne permettant d'étudier les capacités en généralisation de tels votes de majorité en supposant un a priori sur la pertinence des votants. Notre première contribution vise à étendre un algorithme récent, MinCq, minimisant une borne sur l'erreur du vote de majorité en classification binaire. Cette extension permet de prendre en compte une connaissance a priori sur les performances des votants à combiner sous la forme d'une distribution alignée. Nous illustrons son intérêt dans une optique de combinaison de classifieurs de type plus proches voisins, puis dans une perspective de fusion de classifieurs pour l'indexation sémantique de documents multimédia. Nous proposons ensuite une contribution théorique pour des problèmes de classification multiclasse. Cette approche repose sur une analyse PAC-Bayésienne originale en considérant la norme opérateur de la matrice de confusion comme mesure de risque. Notre seconde série de contributions concerne la problématique de l'adaptation de domaine. Dans cette situation, nous présentons notre troisième apport visant à combiner des similarités permettant d'inférer un espace de représentation de manière à rapprocher les distributions des données d'apprentissage et des données à traiter. Cette contribution se base sur la théorie des fonctions de similarités (epsilon,gamma,tau)-bonnes et se justifie par la minimisation d'une borne classique en adaptation de domaine. Pour notre quatrième et dernière contribution, nous proposons la première analyse PAC-Bayésienne appropriée à l'adaptation de domaine. Cette analyse se base sur une mesure consistante de divergence entre distributions permettant de dériver une borne en généralisation pour l'apprentissage de votes de majorité en classification binaire. Elle nous permet également de proposer un algorithme adapté aux classifieurs linéaires capable de minimiser cette borne de manière directe.
59

Modèles à variables latentes pour des données issues de tiling arrays. Applications aux expériences de ChIP-chip et de transcriptome.

Bérard, Caroline 30 November 2011 (has links) (PDF)
Les puces tiling arrays sont des puces à haute densité permettant l'exploration des génomes à grande échelle. Elles sont impliquées dans l'étude de l'expression des gènes et de la détection de nouveaux transcrits grâce aux expériences de transcriptome, ainsi que dans l'étude des mécanismes de régulation de l'expression des gènes grâce aux expériences de ChIP-chip. Dans l'objectif d'analyser des données de ChIP-chip et de transcriptome, nous proposons une modélisation fondée sur les modèles à variables latentes, en particulier les modèles de Markov cachés, qui sont des méthodes usuelles de classification non-supervisée. Les caractéristiques biologiques du signal issu des puces tiling arrays telles que la dépendance spatiale des observations le long du génome et l'annotation structurale sont intégrées dans la modélisation. D'autre part, les modèles sont adaptés en fonction de la question biologique et une modélisation est proposée pour chaque type d'expériences. Nous proposons un mélange de régressions pour la comparaison de deux échantillons dont l'un peut être considéré comme un échantillon de référence (ChIP-chip), ainsi qu'un modèle gaussien bidimensionnel avec des contraintes sur la matrice de variance lorsque les deux échantillons jouent des rôles symétriques (transcriptome). Enfin, une modélisation semi-paramétrique autorisant des distributions plus flexibles pour la loi d'émission est envisagée. Dans un objectif de classification, nous proposons un contrôle de faux-positifs dans le cas d'une classification à deux groupes et pour des observations indépendantes. Puis, nous nous intéressons à la classification d'un ensemble d'observations constituant une région d'intérêt, telle que les gènes. Les différents modèles sont illustrés sur des jeux de données réelles de ChIP-chip et de transcriptome issus d'une puce NimbleGen couvrant le génome entier d'Arabidopsis thaliana.
60

Oriented filters for feature extraction in digital Images : Application to corners detection, Contours evaluation and color Steganalysis / Filtres orientés pour l'extraction de primitives dans les images : Application à la détection de coins, l'évaluation de contours, et à la stéganalyse d'images couleur

Abdulrahman, Hasan 17 November 2017 (has links)
L’interprétation du contenu de l’image est un objectif très important dans le traitement de l’image et la vision par ordinateur. Par conséquent, plusieurs chercheurs y sont intéressés. Une image contient des informations multiples qui peuvent être étudiés, telles que la couleur, les formes, les arêtes, les angles, la taille et l’orientation. En outre, les contours contiennent les structures les plus importantes de l’image. Afin d’extraire les caractéristiques du contour d’un objet, nous devons détecter les bords de cet objet. La détection de bords est un point clé dans plusieurs applications, telles que :la restauration, l’amélioration de l’image, la stéganographie, le filigrane, la récupération, la reconnaissance et la compression de l’image, etc. Toutefois, l’évaluation de la performance de la méthode de détection de bords reste un grand défi. Les images numériques sont parfois modifiées par une procédure légale ou illégale afin d’envoyer des données secrètes ou spéciales. Afin d’être moins visibles, la plupart des méthodes stéganographiques modifient les valeurs de pixels dans les bords/textures de parties de l’image. Par conséquent, il est important de détecter la présence de données cachées dans les images numériques. Cette thèse est divisée principalement en deux parties.La première partie discute l’évaluation des méthodes de détection des bords du filtrage, des contours et des angles. En effet, cinq contributions sont présentées dans cette partie : d’abord, nous avons proposé un nouveau plan de surveillance normalisée de mesure de la qualité. En second lieu, nous avons proposé une nouvelle technique pour évaluer les méthodes de détection des bords de filtrage impliquant le score minimal des mesures considérées. En plus, nous avons construit une nouvelle vérité terrain de la carte de bords étiquetée d’une manière semi-automatique pour des images réelles.En troisième lieu, nous avons proposé une nouvelle mesure prenant en compte les distances de faux points positifs pour évaluer un détecteur de bords d’une manière objective. Enfin, nous avons proposé une nouvelle approche de détection de bords qui combine la dérivée directionnelle et l’homogénéité des grains. Notre approche proposée est plus stable et robuste au bruit que dix autres méthodes célèbres de détection. La seconde partie discute la stéganalyse de l’image en couleurs, basée sur l’apprentissage automatique (machine learning). En effet, trois contributions sont présentées dans cette partie : d’abord, nous avons proposé une nouvelle méthode de stéganalyse de l’image en couleurs, basée sur l’extraction de caractéristiques de couleurs à partir de corrélations entre les gradients de canaux rouge, vert et bleu. En fait, ces caractéristiques donnent le cosinus des angles entre les gradients. En second lieu, nous avons proposé une nouvelle méthode de stéganalyse de l’image en couleurs, basée sur des mesures géométriques obtenues par le sinus et le cosinus des angles de gradients entre tous les canaux de couleurs. Enfin, nous avons proposé une nouvelle méthode de stéganalyse de l’image en couleurs, basée sur une banque de filtres gaussiens orientables. Toutes les trois méthodes proposées présentent des résultats intéressants et prometteur en devançant l’état de l’art de la stéganalyse en couleurs. / Interpretation of image contents is very important objective in image processing and computer vision. Wherefore, it has received much attention of researchers. An image contains a lot of information which can be studied such as color, shapes, edges, corners, size, and orientation. Moreover, contours include the most important structures in the image. In order to extract features contour of an object, we must detect the edges of that object. Edge detection results, remains a key point and very important step in wide range of applications such as: image restoration, enhancement, steganography, watermarking, image retrieval, recognition, compression, and etc. An efficient boundary detection method should create a contour image containing edges at their correct locations with a minimum of misclassified pixels. However, the performance evaluationof the edge detection results is still a challenging problem. The digital images are sometimes modify by a legal or illegal data in order to send special or secret data. These changes modify slight coefficient values of the image. In order to be less visible, most of the steganography methods modify the pixel values in the edge/texture image areas. Therefore, it is important to detect the presence of hidden data in digital images. This thesis is divided mainly into two main parts. The first part, deals with filtering edge detection, contours evaluation and corners detection methods. More deeply, there are five contributions are presented in this part: first, proposed a new normalized supervised edge map quality measure. The strategy to normalize the evaluation enables to consider a score close to 0 as a good edge map, whereas a score 1 translates a poor segmentation. Second, proposed a new technique to evaluate filtering edge detection methods involving the minimum score of the considerate measures. Moreover, build a new ground truth edge map labelled in semi-automatic way in real images. Third, proposed a new measure takes into account the distances of false positive points to evaluate an edge detector in an objective way. Finally, proposed a new approach for corner detection based on the combination of directional derivative and homogeneity kernels. The proposed approach remains more stable and robust to noise than ten famous corner detection methods. The second part, deals with color image steganalysis, based on a machine learning classification. More deeply, there are three contributionsare presented in this part: first, proposed a new color image steganalysis method based on extract color features from correlations between the gradients of red, green and blue channels. Since these features give the cosine of angles between gradients. Second, proposed a new color steganalysis method based on geometric measures obtained by the sine and cosine of gradient angles between all the color channels. Finally, proposed a new approach for color image steganalysisbased on steerable Gaussian filters Bank.All the three proposed methods in this part, provide interesting and promising results by outperforming the state-of-art color image steganalysis.

Page generated in 0.0456 seconds