• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3530
  • 2061
  • 826
  • 688
  • 559
  • 170
  • 125
  • 103
  • 82
  • 62
  • 59
  • 37
  • 37
  • 37
  • 37
  • Tagged with
  • 10308
  • 1567
  • 1380
  • 1260
  • 1169
  • 1112
  • 912
  • 825
  • 795
  • 751
  • 745
  • 693
  • 657
  • 616
  • 538
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
731

Innovative Thermal Management of Electronics Used in Oil Well Logging

Jakaboski, Juan-Carlos 14 May 2004 (has links)
The oil and gas industries use sophisticated logging tools during and after drilling. These logging tools employ internal electronics for sensing viscosity, pressure, temperature, and other important quantities. To protect the sensitive electronics, which typically have a maximum allowable temperature of 100 㬠they are shielded and insulated from the harsh external drilling environment. The insulation reduces the external heat input, but it also makes rejection of the heat generated within the electronics challenging. Electronic component failures promoted by elevated temperatures, and thermal stress, require a time consuming and expensive logging tool replacement process. Better thermal management of the electronics in logging tools promises to save oil and gas companies time and money. This research focuses on this critical thermal management challenge. Specifically, this thesis describes the design, fabrication, and test of an innovative thermal management system capable of cooling commercial-off-the-shelf electronics for extended periods in harsh ambient temperatures exceeding 200 㮠Resistive heaters embedded in quad-flat-packages simulate the electronics used in oil well logging. A custom high temperature oven facilitates the evaluation of a full scale prototype of the thermal management system. We anticipate the prototype device will validate computer modeling efforts on which its design was based, and advance future designs of the thermal management system.
732

Development of Microelectronics Solder Joint Inspection System: Modal Analysis, Finite Element Modeling, and Ultrasound Signal Processing

Zhang, Lizheng 19 May 2006 (has links)
Inspection of solder joint interconnection has been a crucial process in the electronics manufacturing industry to reduce manufacturing cost, improve yield, and ensure product quality and reliability. New inspection techniques are urgently needed to fill in the gap between available inspection capabilities and industry requirement of low-cost, fast-speed, and highly reliable inspection systems. The laser ultrasound inspection system under development aims to provide a solution that can overcome some of the limitations of current inspection techniques. Specifically, the fully developed system will be an automated system that is capable of inspecting hidden solder joints with multiple defect types. This research work includes the following aspects: 1) Inspection system integration and automation to improve system throughput and capability, system performance characterization by stability study and gage repeatability and reproducibility study , 2) Development and implementation of signal processing methods, including time-domain correlation coefficient analysis, auto-comparison method, and frequency-domain spectral estimation, to allow for fast and accurate interpretation of vibration signals, 3) Development of a finite element modal model followed by experimental validation. The modal analysis results indicate there are unique mode frequencies and mode shapes associated with certain solder joint defects, and 4) Study of the systems unique capability in detecting solder joint fatigue cracks.
733

Effect of Pressurization and Expulsion of Entrapped Air in Pipelines

Lee, Nahm Ho 20 July 2005 (has links)
Analytical and experimental laboratory studies were conducted for rapid pressurizing of entrapped gas at the end of a horizontal liquid pipeline. In this paper analytical and experimental model study are presented for pressurizing entrapped gas pocket at the end of a liquid column in a horizontal pipeline. Analytical models are considered such as (1) acoustic effect of both liquid and gas side, (2) variation of liquid length, and (3) thermal damping process. Closed form of solutions were derived for a lumped liquid and lumped gas model if pipeline is a horizontal. Experiments were conducted to verify the analytical models. Comparison of analytical and experimental model results were presented. Analytical model was developed to define the physics behind the gas venting case. Experiments were conducted for a range of orifice sizes from 1/16 to of the pipe diameter with reservoir pressure two, three and four times of ambient pressure for five different pipe configurations. Experimental results confirm the assumption of modified entrapped air model is correct.
734

Durability of Polymer Composite Materials

Liu, Liu 13 October 2006 (has links)
The purpose of this research is to examine structural durability of advanced composite materials under critical loading conditions, e.g., combined thermal and mechanical loading and shear fatigue loading. A thermal buckling model of a burnt column, either axially restrained or under an axial applied force was developed. It was predicted that for a column exposed to the high heat flux under simultaneous constant compressive load, the response of the column is the same as that of an imperfection column; the instability of the burnt column happens. Based on the simplified theoretical prediction, the post-fire compressive behavior of fiberglass reinforced vinyl-ester composite columns, which have been exposed to high heat flux for a certain time was investigated experimentally, the post-fire compressive strength, modulus and failure mode were determined. The integrity of the same column under constant compressive mechanical loading combined with heat flux exposure was examined using a specially designed mechanical loading fixture that mounted directly below a cone calorimeter. All specimens in the experiments exhibited compressive instability. The experimental results show a thermal bending moment exists and has a significant influence on the structural behavior, which verified the thermal buckling model. The trend of response between the deflection of the column and exposure time is similar to that predicted by the model. A new apparatus was developed to study the monotonic shear and cyclic-shear behavior of sandwich structures. Proof-of-concept experiments were performed using PVC foam core polymeric sandwich materials. Shear failure occurred by the extension of cracks parallel to the face-sheet/core interface, the shear modulus degraded with the growth of fatigue damage. Finite element analysis was conducted to determine stress distribution in the proposed specimen geometry used in the new technique. Details for a novel apparatus used for the fatigue testing of thin films and face sheets are also provided.
735

The Thermal Fracture Technique on Laser Cutting of Brittle Materials

Lin, Tzu-hsiang 03 September 2010 (has links)
The finite element method has employed to simulate the laser thermal cracking process for brittle materials. The varieties of temperature and thermal stress distributions around the crack tip were studied. The effect of cracking parameters, i.e. laser power, focus moving speed, plate thickness, crack length, cooling effect¡K etc., on the crack propagation has also investigated. The stress intensity factor around crack tip is considered as the key parameter to dominate the crack propagation. The thermal-plastic-elastic finite element model was employed to simulate the temperature and stress distributions. The strain energy release rate and stress intensity factor solved from virtual crack closure technique and displacement extrapolation method are employed to illustrate the crack state in this study. Five crack length models were used to show the stress intensity factor variations around the crack tip. Numerical results indicate that the head flux on the surface, substrate thickness and adopting cooling sources may affect the crack propagation, crack delay significantly. The results in this study also demonstrate the feasibility of employing finite element method in the exploring crack propagation mechanism in laser thermal cracking process.
736

Organic Photovoltaic Cells of Fully Conjugated Poly-(3-hexylthiophene) and Heterocyclic Aromatic PCPDTBTCopolymer Doped with Derivatized Fullerene

Lin, Tzu-chin 20 January 2011 (has links)
Fully conjugated coil-like polymer poly-(3-hexylthiophene) (P3HT) and aromatic heterocyclic copolymer poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta-[2,1-b;3,4-b¡¬]- dithiophene)-alt-4,7-(2,1,3-benzothiadiazole] (PCPDTBT) were applied separately as donors mixed with derivatized carbon fullerence [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) serving as an acceptor. Single layer photovoltaic cells of ITO/ PEDOT:PSS/polymer:PC61BM/LiF/Al were fabricated to study photovoltaic effect of layer thickness, thermal annealing, composition variance, and processing solvent. At a P3HT:PC61BM weight ratio of 1:1, the thermally annealed photovoltaic cells achieved a conversion efficiency (£bp) of 4.58 % from enhanced contact between cathode and active layer. At a PCPDTBT:PC61BM weight ratio of 1:1.25, the best £bp was 2.62 %. The efficiency difference was due to PCPDTBT:PC61BM was highly phase separated preventing the formation of conductive interpenetrating network to facilitate charge transport. Its device fill factor was limited to be 38 %. Under the same spin coating speed, solutions of different PC61BM concentration would yield different spun film thickness leading to large change in conversion efficiency (£bp). At a constant active layer thickness, £bp tended to be stable indicating that £bp was affected more by the layer thickness than by PC61BM concentration. A layer of mixing P3HT: PCPDTBT: PC61BM would expand the absorption range from visible to near infrared. However, an increased PCPDTBT concentration did not help £bp. This is due to charge transport imbalance between P3HT and PCPDTBT leading to an £bp less than those of individual blends with PC61BM. Device £bp was consistently higher for using a solvent with a boiling point higher than polymer glass transition temperature (Tg).
737

A study of the interfaces between Au5Sn and Au

Jiang, Bo-Han 01 July 2011 (has links)
The orientation relationship and interfaces of Au5Sn with the Au (001), (110) and (111) surfaces have been studied with transmission electron microscopy. Au was evaporated onto the NaCl (001), (110) and (111) surfaces to form epitaxial Au thin films and Sn was evaporated onto the Au film and heat treated to form Au5Sn. Two types of orientation relationships were found: (1) (2-1-10)Au5Sn/(001)Au¡A(0006)Au5Sn //(-220)Au and (03-30)Au5Sn//(220)Au, which was found on the (2-1-10)Au5Sn/(001)Au interface; and (2) (2-1-10)Au5Sn/(-111)Au¡A(0006)Au5Sn //(-22-4)Au and (03-30)Au5Sn//(220)Au, which was found on the (2-1-10)Au5Sn/(-111)Au interface.The structures of the interfaces were analyzed. The free energy formation of AuSn is much larger than that of Au5Sn.Analysis of above results show that the differences of the interfacial energies between AuSn/Au and Au5Sn/Au may not be a significant. Therefore probably has a lower activation energy of AuSn nucleation and in the first plane to form at the AuSn interface.
738

Design and characterization of nanowire array as thermal interface material for electronics packaging

Chiang, Juei-Chun 15 May 2009 (has links)
To allow electronic devices to operate within allowable temperatures, heat sinks and fans are employed to cool down computer chips. However, cooling performance is limited by air gaps between the computer chip and the heat sink, due to the fact that air is a poor heat conductor. To alleviate this problem, thermal interface material (TIM) is often applied between mating substrates to fill air gaps. Carbon nanotube (CNT) based TIM has been reported to have excellent thermal impedance; however, because it is non biodegradable, its potential impact on the environment is a concern. In this thesis research, two types of TIMs were designed, synthesized, and characterized. The first type, Designed TIM 1, consisted of anodic aluminum oxide (AAO) templates with nanochannels (pore size=80nm) embedded with copper nanowires by electrodeposition. This type of nanostructure was expected to have low thermal impedance because the forest-like structure of copper nanowires can bridge two mating surfaces and efficiently transport heat one dimensionally from one substrate to the other. The second type, Designed TIM 2, was fabricated by sandwiching Designed TIM 1 with commercially available thermal grease to further reduce thermal impedance. It was expected that the copper nanowire structures would secure the thermal grease in place, thus preventing grease pump-out under contact pressure, which is a common problem associated with the usage of thermal grease. The morphologies of the two designed TIMs were studied using scanning electron microscopy (SEM), and their thermal properties were determined using ASTM D5470-06, the standard method for testing thermal transmission properties of thermally conductive materials. Experiments were conducted to evaluate the proposed TIMs, as well as commercially available TIMs, under different temperature and pressure settings. Experimental results suggest that the thermal impedance of TIMs can be reduced by increasing contact pressure or reducing thickness. Designed TIM 2 yielded 0.255℃-cm2/W, which is lower than thermal grease and other available TIMs at the operating temperature of 50 to 60℃. Considering the application limitations and safety issues of thermal grease, phase change material, and CNT-based TIMs, our designed TIMs are safe and promising for future applications.
739

Experimental investigation of size effect on thermal conductivity for ultra-thin amorphous poly(methyl methacrylate) (PMMA) films

Kim, Ick Chan 15 May 2009 (has links)
An investigation was conducted to determine whether a “size effect” phenomenon for one particular thermophysical property, thermal conductivity, actually exists for amorphous poly(methyl methacrylate) (PMMA) films with thicknesses ranging from 40 nm to 2 μm. This was done by using a non-contact, non-invasive, in-situ Transient Thermo-Reflectance (TTR) laser based technique. The results demonstrated that the intrinsic thermal conductivity of a 40 nm PMMA film deposited on native oxide of silicon increases by a factor of three over bulk PMMA values, and a distinct increase in the thermal conductivity of PMMA film was observed in ultra-thin (sub 100 nm) films. This confirmed the importance of film thickness for the through-plane thermal conductivity value of PMMA film on native oxide of silicon.
740

Development of a simplified thermal analysis procedure for insulating glass units

Klam, Jeremy Wayne 02 June 2009 (has links)
A percentage of insulating glass (IG) units break each year due to thermally induced perimeter stresses. The glass industry has known about this problem for many years and an ASTM standard has recently been developed for the design of monolithic glass plates for thermal stresses induced by solar irradiance. It is believed that a similar standard can be developed for IG units if a proper understanding of IG thermal stresses can be developed. The objective of this research is to improve understandings of IG thermal stresses and compare the IG thermal stresses with those that develop in monolithic glass plates given similar environmental conditions. The major difference between the analysis of a monolithic glass plate and an IG unit is energy exchange due to conduction, natural convection, and long wave radiation through the gas space cavity. In IG units, conduction, natural convection, and long wave radiation combine in a nonlinear fashion that frequently requires iterative numerical analyses for determining thermal stresses in certain situations. To simplify the gas space energy exchange, a numerical propagation procedure was developed. The numerical propagation procedure combines the nonlinear effects of conduction, natural convection, and long wave radiation into a single value. Use of this single value closely approximates the nonlinear nature of the gas space energy exchange and simplifies the numerical analysis. The numerical propagation procedure was then coupled with finite element analysis to estimate thermal stresses for both monolithic glass plates and IG units. It is shown that the maximum thermal stresses that develop in IG units increase linearly with input solar irradiance during the transient phase. It is shown that an initial preload stress develops under equilibrium conditions due to the thermal bridge effects of the spacer. It is shown that IG units develop larger thermal stresses than monolithic glass plates under similar environmental conditions. Finally, it is shown that the use of low-e coatings increase IG thermal stresses and that the location of low-e coating as well as environmental conditions affect which glass plate develops larger thermal stresses.

Page generated in 0.0647 seconds