Spelling suggestions: "subject:"smooth analysis""
1 |
Enhanced Optimality Conditions and New Constraint Qualifications for Nonsmooth Optimization ProblemsZhang, Jin 12 December 2014 (has links)
The main purpose of this dissertation is to investigate necessary optimality conditions for a class of very general nonsmooth optimization problems called the mathematical program with geometric constraints
(MPGC). The geometric constraint means that the image of certain mapping is included in a
nonempty and closed set.
We first study the conventional nonlinear program with equality, inequality and abstract set constraints as a special case of MPGC. We derive the enhanced Fritz John condition and from which, we obtain the enhanced Karush-Kuhn-Tucker (KKT) condition and introduce the associated pseudonormality and quasinormality condition. We prove that either pseudonormality or quasinormality with regularity implies the existence of a local error bound. We also give a tighter upper estimate for the Fr\'chet subdifferential and the limiting subdifferential of the value function in terms of quasinormal multipliers which is usually a smaller set than the set of classical normal multipliers.
We then consider a more general MPGC where the image of the mapping from a Banach space is included in a
nonempty and closed subset of a finite dimensional space. We obtain the enhanced Fritz John necessary optimality conditions in terms of the
approximate subdifferential. One of the technical
difficulties in obtaining such a result in an infinite dimensional space is
that no compactness result can be used to show the existence of local
minimizers of a perturbed problem. We employ the celebrated
Ekeland's variational principle to obtain the results instead. We then apply our results to the study of exact penalty and sensitivity analysis.
We also study a special class of MPCG named mathematical programs with equilibrium constraints (MPECs). We argue that the MPEC-linear independence constraint qualification is not a constraint qualification for the strong (S-) stationary condition when the objective function is nonsmooth. We derive the enhanced Fritz John Mordukhovich (M-) stationary condition for MPECs. From this enhanced Fritz John M-stationary condition we introduce the associated MPEC generalized pseudonormality and quasinormality condition and build the relations between them and some other widely used MPEC constraint qualifications. We give upper estimates for the subdifferential of the value function in terms of the enhanced M- and C-multipliers respectively.
Besides, we focus on some new
constraint qualifications introduced for nonlinear extremum problems in the
recent literature. We show that, if the constraint functions are continuously
differentiable, the relaxed Mangasarian-Fromovitz constraint qualification (or,
equivalently, the constant rank of the subspace component condition) implies
the existence of local error bounds. We further extend the new result to the MPECs. / Graduate / 0405
|
2 |
Análise não-diferenciável e condições necessárias de otimalidade para problema de controle ótimo com restrições mistas /Izelli, Reginaldo César. January 2006 (has links)
Orientador: Geraldo Nunes Silva / Banca: Vilma Alves de Oliveira / Banca: Masayoshi Tsuchida / Resumo: Estamos interessados em estudar uma generalização do Princípio do Máximo de Pontryagin para problema de controle ótimo com restrições mistas envolvendo funções nãodiferenciáveis, pois este princípio não se aplica para todos os tipos de problemas. O principal objetivo deste trabalho é apresentar as condições necessárias de otimalidade na forma do princípio do máximo que serão aplicadas para o problema de controle ótimo com restrições mistas envolvendo funções não-diferenciáveis. Para alcançar este objetivo apresentamos estudos sobre cones normais e cones tangentes os quais são utilizados no desenvolvimento da teoria de subdiferenciais. Após esse embasamento formulamos o problema de controle ótimo envolvendo funções não-diferenciáveis, e apresentamos as condições necessárias de otimalidade. / Abstract: We are interested in study a generalization of the Pontryagin Maximum Principle for optimal control problems with mixed constraints involving nondi erentiable functions, because this principle can not be applied for all the types of problems. The main objective of this work is to present the necessary conditions of optimality in the form of the maximum principle that will be applied for the optimal control problem with mixed constraints involving nondi erentiable functions. To achieve this objective we present studies above normal cones and tangent cones which are used in the development of the theory of subdi erentials. After this foundation we formulate the optimal control problem involving nondi erentiable functions, and we present the necessary conditions of optimality. / Mestre
|
3 |
First- and Second-Order Conditions for Stability Properties and Error Bounds for Generalized Equations, and ApplicationsJelitte, Mario 27 June 2024 (has links)
Many real-world problems can be modeled by generalized equations. The solution of the latter can be a challenging task, and typically requires the use of some efficient numerical procedures, whose convergence analysis often relies on stability properties of a solution in question, and on a suitable over-estimate for the distance of a given point to the solution set of the problem, called error bound. With this thesis, we aim at a unified approach to first- and second-order conditions for stability properties and error bounds for generalized equations. To this end, we study existing and develop new
concepts for generalized first-order derivatives of set-valued mappings, and use them to formulate criteria for Lipschitzian stability properties and Lipschitzian error bound conditions. These criteria can all be regarded as the property that a suitable generalized least singular value of a generalized derivative is nonzero. By considering generalized least singular values as an extended real-valued function that depends on arguments of an underlying mapping, we will be able to obtain second-order conditions arising from generalized derivatives of this function to guarantee non-Lipschitzian stability properties and non-Lipschitzian error bound conditions. This allows us to extend the territory
covered by some seminal monographs dealing with stability properties and error bounds for generalized equations under first-order conditions. Furthermore, we discuss some specializations of our findings, and work out relations to existing results. Finally, we also investigate correlations between stability properties and error bounds with respect to different problem-formulations of one and the same generalized equation.
|
4 |
Análise não-diferenciável e condições necessárias de otimalidade para problema de controle ótimo com restrições mistasIzelli, Reginaldo César [UNESP] 12 September 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:08Z (GMT). No. of bitstreams: 0
Previous issue date: 2006-09-12Bitstream added on 2014-06-13T19:47:37Z : No. of bitstreams: 1
izelli_rc_me_sjrp.pdf: 916240 bytes, checksum: 24bbf9996f6955ca38766b92b37822c8 (MD5) / Estamos interessados em estudar uma generalização do Princípio do Máximo de Pontryagin para problema de controle ótimo com restrições mistas envolvendo funções nãodiferenciáveis, pois este princípio não se aplica para todos os tipos de problemas. O principal objetivo deste trabalho é apresentar as condições necessárias de otimalidade na forma do princípio do máximo que serão aplicadas para o problema de controle ótimo com restrições mistas envolvendo funções não-diferenciáveis. Para alcançar este objetivo apresentamos estudos sobre cones normais e cones tangentes os quais são utilizados no desenvolvimento da teoria de subdiferenciais. Após esse embasamento formulamos o problema de controle ótimo envolvendo funções não-diferenciáveis, e apresentamos as condições necessárias de otimalidade. / We are interested in study a generalization of the Pontryagin Maximum Principle for optimal control problems with mixed constraints involving nondi erentiable functions, because this principle can not be applied for all the types of problems. The main objective of this work is to present the necessary conditions of optimality in the form of the maximum principle that will be applied for the optimal control problem with mixed constraints involving nondi erentiable functions. To achieve this objective we present studies above normal cones and tangent cones which are used in the development of the theory of subdi erentials. After this foundation we formulate the optimal control problem involving nondi erentiable functions, and we present the necessary conditions of optimality.
|
5 |
Conditions d'optimalité pour des problèmes en contrôle optimal et applications / Optimality conditions for optimal control problems and applicationsKhalil, Nathalie 17 November 2017 (has links)
Le projet de cette thèse est double. Le premier concerne l’extension des résultats précédents sur les conditions nécessaires d’optimalité pour des problèmes avec contraintes d’état, dans le cadre du contrôle optimal ainsi que dans le cadre de calcul des variations. Le deuxième objectif consiste à travailler sur deux nouveaux aspects de recherche : dériver des résultats de viabilité pour une classe de systèmes de contrôle avec des contraintes d’état dans lesquels les conditions dites ‘standard inward pointing conditions’ sont violées; et établir les conditions nécessaires d’optimalité pour des problèmes de minimisation de coût moyen éventuellement perturbés par des paramètres inconnus.Dans la première partie, nous examinons les conditions nécessaires d’optimalité qui jouent un rôle important dans la recherche de candidats pour être des solutions optimales parmi toutes les solutions admissibles. Cependant, dans les problèmes d’optimisation dynamique avec contraintes d’état, certaines situations pathologiques pourraient survenir. Par exemple, il se peut que le multiplicateur associé à la fonction objective (à minimiser) disparaisse. Dans ce cas, la fonction objective à minimiser n’intervient pas dans les conditions nécessaires de premier ordre: il s’agit du cas dit anormal. Un phénomène pire, appelé le cas dégénéré montre que, dans certaines circonstances, l’ensemble des trajectoires admissibles coïncide avec l’ensemble des candidats minimiseurs. Par conséquent, les conditions nécessaires ne donnent aucune information sur les minimiseurs possibles.Pour surmonter ces difficultés, de nouvelles hypothèses supplémentaires doivent être imposées, appelées les qualifications de la contrainte. Nous étudions ces deux problèmes (normalité et non dégénérescence) pour des problèmes de contrôle optimal impliquant des contraintes dynamiques exprimées en termes d’inclusion différentielle, lorsque le minimiseur a son point de départ dans une région où la contrainte d’état est non lisse. Nous prouvons que sous une information supplémentaire impliquant principalement le cône tangent de Clarke, les conditions nécessaires sous la forme dite ‘Extended Euler-Lagrange condition’ sont satisfaites en forme normale et non dégénérée pour deux classes de problèmes de contrôle optimal avec contrainte d’état. Le résultat sur la normalité est également appliqué pour le problème de calcul des variations avec contrainte d’état.Dans la deuxième partie de la thèse, nous considérons d’abord une classe de systèmes de contrôle avec contrainte d’état pour lesquels les qualifications de la contrainte standard du ‘premier ordre’ ne sont pas satisfaites, mais une qualification de la contrainte d’ordre supérieure (ordre 2) est satisfaite.Nous proposons une nouvelle construction des trajectoires admissibles (dit un résultat de viabilité) et nous étudions des exemples (tels que l’intégrateur non holonomique de Brockett) fournissant en plus un résultat d’estimation non linéaire. L’autre sujet de la deuxième partie de la thèse concerne l’étude d’une classe de problèmes de contrôle optimal dans lesquels des incertitudes apparaissent dans les données en termes de paramètres inconnus. En tenant compte d’un critère de performance sous la forme de coût moyen, une question cruciale est clairement de pouvoir caractériser les contrôles optimaux indépendamment de l’action du paramètre inconnu: cela permet de trouver une sorte de ‘meilleur compromis’ parmi toutes les réalisations possibles du système de contrôle tant que le paramètre varie. Pour ce type de problèmes, nous obtenons des conditions nécessaires d’optimalité sous la forme du Principe du Maximum (éventuellement pour le cas non lisse). / The project of this thesis is twofold. The first concerns the extension of previous results on necessary optimality conditions for state constrained problems in optimal control and in calculus of variations. The second aim consists in working along two new research lines: derive viability results for a class of control systems with state constraints in which ‘standard inward pointing conditions’ are violated; and establish necessary optimality conditions for average cost minimization problems possibly perturbed by unknown parameters.In the first part, we examine necessary optimality conditions which play an important role in finding candidates to be optimal solutions among all admissible solutions. However, in dynamic optimization problems with state constraints, some pathological situations might arise. For instance, it might occur that the multiplier associated with the objective function (to minimize) vanishes. In this case, the objective function to minimize does not intervene in first order necessary conditions: this is referred to as the abnormal case. A worse phenomenon, called the degenerate case shows that in some circumstances the set of admissible trajectories coincides with the set of candidates to be minimizers. Therefore the necessary conditions give no information on the possible minimizers.To overcome these difficulties, new additional hypotheses have to be imposed, known as constraint qualifications. We investigate these two issues (normality and non-degeneracy) for optimal control problems involving state constraints and dynamics expressed as a differential inclusion, when the minimizer has its left end-point in a region where the state constraint set in nonsmooth. We prove that under an additional information involving mainly the Clarke tangent cone, necessary conditions in the form of the Extended Euler-Lagrange condition are derived in the normal and non-degenerate form for two different classes of state constrained optimal control problems. Application of the normality result is shown also for the calculus of variations problem subject to a state constraint.In the second part of the thesis, we consider first a class of state constrained control systems for which standard ‘first order’ constraint qualifications are not satisfied, but a higher (second) order constraint qualification is satisfied. We propose a new construction for feasible trajectories (a viability result) and we investigate examples (such as the Brockett nonholonomic integrator) providing in addition a non-linear stimate result. The other topic of the second part of the thesis concerns the study of a class of optimal control problems in which uncertainties appear in the data in terms of unknown parameters. Taking into consideration an average cost criterion, a crucial issue is clearly to be able to characterize optimal controls independently of the unknown parameter action: this allows to find a sort of ‘best compromise’ among all the possible realizations of the control system as the parameter varies. For this type of problems, we derive necessary optimality conditions in the form of Maximum Principle (possibly nonsmooth).
|
6 |
A Nonsmooth Nonconvex Descent AlgorithmMankau, Jan Peter 17 January 2017 (has links) (PDF)
In many applications nonsmooth nonconvex energy functions, which are Lipschitz continuous, appear quite naturally. Contact mechanics with friction is a classic example. A second example is the 1-Laplace operator and its eigenfunctions.
In this work we will give an algorithm such that for every locally Lipschitz continuous function f and every sequence produced by this algorithm it holds that every accumulation point of the sequence is a critical point of f in the sense of Clarke. Here f is defined on a reflexive Banach space X, such that X and its dual space X' are strictly convex and Clarkson's inequalities hold. (E.g. Sobolev spaces and every closed subspace equipped with the Sobolev norm satisfy these assumptions for p>1.) This algorithm is designed primarily to solve variational problems or their high dimensional discretizations, but can be applied to a variety of locally Lipschitz functions.
In elastic contact mechanics the strain energy is often smooth and nonconvex on a suitable domain, while the contact and the friction energy are nonsmooth and have a support on a subspace which has a substantially smaller dimension than the strain energy, since all points in the interior of the bodies only have effect on the strain energy. For such elastic contact problems we suggest a specialization of our algorithm, which treats the smooth part with Newton like methods. In the case that the gradient of the entire energy function is semismooth close to the minimizer, we can even prove superlinear convergence of this specialization of our algorithm.
We test the algorithm and its specialization with a couple of benchmark problems. Moreover, we apply the algorithm to the 1-Laplace minimization problem restricted to finitely dimensional subspaces of piecewise affine, continuous functions.
The algorithm developed here uses ideas of the bundle trust region method by Schramm, and a new generalization of the concept of gradients on a set. The basic idea behind this gradients on sets is that we want to find a stable descent direction, which is a descent direction on an entire neighborhood of an iteration point. This way we avoid oscillations of the gradients and very small descent steps (in the smooth and in the nonsmooth case). It turns out, that the norm smallest element of the gradient on a set provides a stable descent direction.
The algorithm we present here is the first algorithm which can treat locally Lipschitz continuous functions in this generality, up to our knowledge. In particular, large finitely dimensional Banach spaces haven't been studied for nonsmooth nonconvex functions so far. We will show that the algorithm is very robust and often faster than common algorithms. Furthermore, we will see that with this algorithm it is possible to compute reliably the first eigenfunctions of the 1-Laplace operator up to disretization errors, for the first time. / In vielen Anwendungen tauchen nichtglatte, nichtkonvexe, Lipschitz-stetige Energie Funktionen in natuerlicher Weise auf. Ein klassische Beispiel bildet die Kontaktmechanik mit Reibung. Ein weiteres Beispiel ist der $1$-Laplace Operator und seine Eigenfunktionen.
In dieser Dissertation werden wir ein Abstiegsverfahren angeben, so dass fuer jede lokal Lipschitz-stetige Funktion f jeder Haeufungspunkt einer durch dieses Verfahren erzeugten Folge ein kritischer Punkt von f im Sinne von Clarke ist. Hier ist f auf einem einem reflexiver, strikt konvexem Banachraum definierert, fuer den der Dualraum ebenfalls strikt konvex ist und die Clarkeson Ungleichungen gelten. (Z.B. Sobolevraeume und jeder abgeschlossene Unterraum mit der Sobolevnorm versehen, erfuellt diese Bedingung fuer p>1.) Dieser Algorithmus ist primaer entwickelt worden um Variationsprobleme, bzw. deren hochdimensionalen Diskretisierungen zu loesen. Er kann aber auch fuer eine Vielzahl anderer lokal Lipschitz stetige Funktionen eingesetzt werden.
In der elastischen Kontaktmechanik ist die Spannungsenergie oft glatt und nichtkonvex auf einem geeignetem Definitionsbereich, waehrend der Kontakt und die Reibung durch nicht glatte Funktionen modelliert werden, deren Traeger ein Unterraum mit wesentlich kleineren Dimension ist, da alle Punkte im Inneren des Koerpers nur die Spannungsenergie beeinflussen. Fuer solche elastischen Kontaktprobleme schlagen wir eine Spezialisierung unseres Algorithmuses vor, der den glatten Teil mit Newton aehnlichen Methoden behandelt. Falls der Gradient der gesamten Energiefunktion semiglatt in der Naehe der Minimalstelle ist, koennen wir sogar beweisen, dass der Algorithmus superlinear konvergiert.
Wir testen den Algorithmus und seine Spezialisierung an mehreren Benchmark Problemen. Ausserdem wenden wir den Algorithmus auf 1-Laplace Minimierungsproblem eingeschraenkt auf eine endlich dimensionalen Unterraum der stueckweise affinen, stetigen Funktionen an.
Der hier entwickelte Algorithmus verwendet Ideen des Bundle-Trust-Region-Verfahrens von Schramm, und einen neu entwickelten Verallgemeinerung von Gradienten auf Mengen. Die zentrale Idee hinter den Gradienten auf Mengen ist die, dass wir stabile Abstiegsrichtungen auf einer ganzen Umgebung der Iterationspunkte finden wollen. Auf diese Weise vermeiden wir das Oszillieren der Gradienten und sehr kleine Abstiegsschritte (im glatten, wie im nichtglatten Fall.) Es stellt sich heraus, dass das normkleinste Element dieses Gradienten auf der Umgebung eine stabil Abstiegsrichtung bestimmt.
So weit es uns bekannt ist, koennen die hier entwickelten Algorithmen zum ersten Mal lokal Lipschitz-stetige Funktionen in dieser Allgemeinheit behandeln. Insbesondere wurden nichtglatte, nichtkonvexe Funktionen auf derart hochdimensionale Banachraeume bis jetzt nicht behandelt. Wir werden zeigen, dass unser Algorithmus sehr robust und oft schneller als uebliche Algorithmen ist. Des Weiteren, werden wir sehen, dass es mit diesem Algorithmus das erste mal moeglich ist, zuverlaessig die erste Eigenfunktion des 1-Laplace Operators bis auf Diskretisierungsfehler zu bestimmen.
|
7 |
Sur des solutions périodiques de systèmes discrets à vibro-impact avec un contact unilatéral / On some periodic solutions of discrete vibro-impact systems with a unilateral contact conditionLe Thi, Huong 16 June 2017 (has links)
La motivation industrielle et mécanique du problème sera présentée pour un problème continu: élasticité linéaire avec une contrainte unilatérale. Un système masse-ressort avec un contact unilatéral en découle par discrétisation. Le but de cette thèse est d'étudier ces systèmes à vibro-impact de N degrés de liberté avec un contact unilatéral. Le système résultant est linéaire en l'absence de contact; Il est régi par une loi d'impact autrement. L'auteur identifie les modes non linéaires qui présentent une phase de contact collant pour un modèle à deux degrés de liberté en présence d'un obstacle rigide. L'application de premier retour de Poincaré est un outil fondamental pour étudier la dynamique près de solutions périodiques. Étant donné que la section de Poincaré est un sous-ensemble de l'interface de contact dans l'espace des phases, elle peut être tangente aux orbites pour les contacts rasants et conduire à une singularité en « racine carrée » déjà connue en Mécanique. Cette singularité est revisitée dans un cadre mathématique rigoureux. Elle implique la discontinuité du temps de premier retour. Enfin, l’instabilité des modes linéaire rasants est abordée. / The mechanical motivation is presented for a PDE with a constraint. The purpose of this thesis is to study N degree-of-freedom vibro-impact systems with an unilateral contact. The resulting system is linear in the absence of contact; it is governed by an impact law otherwise. The author identifies some nonlinear modes that display a sticking phase. The First Return Map is a fundamental tool to explore periodic solutions. Since the Poincaré section is a subset of the contact interface in the phase-space, it can be tangent to orbits which yields the well-known square-root singularity. This singularity is here revisited in a rigorous mathematical framework. Moreover, the study of this singularity implies a more important singularity: the discontinuity of the first return time. Finally, the square-root dynamics near the linear grazing modes which may lead to the instability of these linear grazing modes is studied.
|
8 |
A Nonsmooth Nonconvex Descent AlgorithmMankau, Jan Peter 09 December 2016 (has links)
In many applications nonsmooth nonconvex energy functions, which are Lipschitz continuous, appear quite naturally. Contact mechanics with friction is a classic example. A second example is the 1-Laplace operator and its eigenfunctions.
In this work we will give an algorithm such that for every locally Lipschitz continuous function f and every sequence produced by this algorithm it holds that every accumulation point of the sequence is a critical point of f in the sense of Clarke. Here f is defined on a reflexive Banach space X, such that X and its dual space X' are strictly convex and Clarkson's inequalities hold. (E.g. Sobolev spaces and every closed subspace equipped with the Sobolev norm satisfy these assumptions for p>1.) This algorithm is designed primarily to solve variational problems or their high dimensional discretizations, but can be applied to a variety of locally Lipschitz functions.
In elastic contact mechanics the strain energy is often smooth and nonconvex on a suitable domain, while the contact and the friction energy are nonsmooth and have a support on a subspace which has a substantially smaller dimension than the strain energy, since all points in the interior of the bodies only have effect on the strain energy. For such elastic contact problems we suggest a specialization of our algorithm, which treats the smooth part with Newton like methods. In the case that the gradient of the entire energy function is semismooth close to the minimizer, we can even prove superlinear convergence of this specialization of our algorithm.
We test the algorithm and its specialization with a couple of benchmark problems. Moreover, we apply the algorithm to the 1-Laplace minimization problem restricted to finitely dimensional subspaces of piecewise affine, continuous functions.
The algorithm developed here uses ideas of the bundle trust region method by Schramm, and a new generalization of the concept of gradients on a set. The basic idea behind this gradients on sets is that we want to find a stable descent direction, which is a descent direction on an entire neighborhood of an iteration point. This way we avoid oscillations of the gradients and very small descent steps (in the smooth and in the nonsmooth case). It turns out, that the norm smallest element of the gradient on a set provides a stable descent direction.
The algorithm we present here is the first algorithm which can treat locally Lipschitz continuous functions in this generality, up to our knowledge. In particular, large finitely dimensional Banach spaces haven't been studied for nonsmooth nonconvex functions so far. We will show that the algorithm is very robust and often faster than common algorithms. Furthermore, we will see that with this algorithm it is possible to compute reliably the first eigenfunctions of the 1-Laplace operator up to disretization errors, for the first time. / In vielen Anwendungen tauchen nichtglatte, nichtkonvexe, Lipschitz-stetige Energie Funktionen in natuerlicher Weise auf. Ein klassische Beispiel bildet die Kontaktmechanik mit Reibung. Ein weiteres Beispiel ist der $1$-Laplace Operator und seine Eigenfunktionen.
In dieser Dissertation werden wir ein Abstiegsverfahren angeben, so dass fuer jede lokal Lipschitz-stetige Funktion f jeder Haeufungspunkt einer durch dieses Verfahren erzeugten Folge ein kritischer Punkt von f im Sinne von Clarke ist. Hier ist f auf einem einem reflexiver, strikt konvexem Banachraum definierert, fuer den der Dualraum ebenfalls strikt konvex ist und die Clarkeson Ungleichungen gelten. (Z.B. Sobolevraeume und jeder abgeschlossene Unterraum mit der Sobolevnorm versehen, erfuellt diese Bedingung fuer p>1.) Dieser Algorithmus ist primaer entwickelt worden um Variationsprobleme, bzw. deren hochdimensionalen Diskretisierungen zu loesen. Er kann aber auch fuer eine Vielzahl anderer lokal Lipschitz stetige Funktionen eingesetzt werden.
In der elastischen Kontaktmechanik ist die Spannungsenergie oft glatt und nichtkonvex auf einem geeignetem Definitionsbereich, waehrend der Kontakt und die Reibung durch nicht glatte Funktionen modelliert werden, deren Traeger ein Unterraum mit wesentlich kleineren Dimension ist, da alle Punkte im Inneren des Koerpers nur die Spannungsenergie beeinflussen. Fuer solche elastischen Kontaktprobleme schlagen wir eine Spezialisierung unseres Algorithmuses vor, der den glatten Teil mit Newton aehnlichen Methoden behandelt. Falls der Gradient der gesamten Energiefunktion semiglatt in der Naehe der Minimalstelle ist, koennen wir sogar beweisen, dass der Algorithmus superlinear konvergiert.
Wir testen den Algorithmus und seine Spezialisierung an mehreren Benchmark Problemen. Ausserdem wenden wir den Algorithmus auf 1-Laplace Minimierungsproblem eingeschraenkt auf eine endlich dimensionalen Unterraum der stueckweise affinen, stetigen Funktionen an.
Der hier entwickelte Algorithmus verwendet Ideen des Bundle-Trust-Region-Verfahrens von Schramm, und einen neu entwickelten Verallgemeinerung von Gradienten auf Mengen. Die zentrale Idee hinter den Gradienten auf Mengen ist die, dass wir stabile Abstiegsrichtungen auf einer ganzen Umgebung der Iterationspunkte finden wollen. Auf diese Weise vermeiden wir das Oszillieren der Gradienten und sehr kleine Abstiegsschritte (im glatten, wie im nichtglatten Fall.) Es stellt sich heraus, dass das normkleinste Element dieses Gradienten auf der Umgebung eine stabil Abstiegsrichtung bestimmt.
So weit es uns bekannt ist, koennen die hier entwickelten Algorithmen zum ersten Mal lokal Lipschitz-stetige Funktionen in dieser Allgemeinheit behandeln. Insbesondere wurden nichtglatte, nichtkonvexe Funktionen auf derart hochdimensionale Banachraeume bis jetzt nicht behandelt. Wir werden zeigen, dass unser Algorithmus sehr robust und oft schneller als uebliche Algorithmen ist. Des Weiteren, werden wir sehen, dass es mit diesem Algorithmus das erste mal moeglich ist, zuverlaessig die erste Eigenfunktion des 1-Laplace Operators bis auf Diskretisierungsfehler zu bestimmen.
|
Page generated in 0.0717 seconds