• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Probability flows in deep learning

Huang, Chin-Wei 10 1900 (has links)
Les modèles génératifs basés sur la vraisemblance sont des éléments fondamentaux pour la modélisation statistique des données structurées. Ils peuvent être utilisés pour synthétiser des échantillons de données réalistes, et la fonction de vraisemblance peut être utilisée pour comparer les modèles et déduire diverses quantités statistiques. Cependant, le défi réside dans le développement de modèles capables de saisir avec précision les schémas statistiques présentés dans la distribution des données. Les modèles existants rencontrent souvent des limitations en termes de flexibilité représentationnelle et d’évolutivité computationnelle en raison du choix de la paramétrisation, freinant ainsi la progression vers cet idéal. Cette thèse présente une exploration systématique des structures appropriées qui peuvent être exploitées pour concevoir des modèles génératifs basés sur la vraisemblance, allant des architectures spécialisées telles que les applications triangulaires et les applications de potentiel convexes aux systèmes dynamiques paramétriques tels que les équations différentielles neuronales qui présentent des contraintes minimales en termes de paramétrisation. Les modèles proposés sont fondés sur des motivations théoriques et sont analysés à travers le prisme du changement de variable associé au processus de génération de données. Cette perspective permet de considérer ces modèles comme des formes distinctes de probability flows, unifiant ainsi des classes apparemment non liées de modèles génératifs basés sur la vraisemblance. De plus, des conceptions algorithmiques pratiques sont introduites pour calculer, approximer ou estimer les quantités nécessaires pour l’apprentissage et l’évaluation. Il est prévu que cette thèse suscite l’intérêt des communautés de modélisation générative et d’apprentissage automatique Bayésien/probabiliste, et qu’elle serve de ressource précieuse et d’inspiration pour les chercheurs et les praticiens du domaine. / Likelihood-based generative models are fundamental building blocks for statistical modeling of structured data. They can be used to synthesize realistic data samples, and the likelihood function can be used for comparing models and inferring various statistical quantities. However, the challenge lies in developing models capable of accurately capturing the statistical patterns presented in the data distribution. Existing models often face limitations in representational flexibility and computational scalability due to the choice of parameterization, impeding progress towards this ideal. This thesis presents a systematic exploration of suitable structures that can be exploited to design likelihood-based generative models, spanning from specialized architectures like triangular maps and convex potential maps to parametric dynamical systems such as neural differential equations that bear minimal parameterization restrictions. The proposed models are rooted in theoretical foundations and analyzed through the lens of the associated change of variable in the data generation process. This perspective allows for viewing these models as distinct forms of probability flows, thereby unifying seemingly unrelated classes of likelihood-based generative models. Moreover, practical algorithmic designs are introduced to compute, approximate, or estimate necessary quantities for training and testing purposes. It is anticipated that this thesis would be of interest to the generative modeling and Bayesian/probabilistic machine learning communities, and will serve as a valuable resource and inspiration for both researchers and practitioners in the field.
2

Deep geometric probabilistic models

Xu, Minkai 10 1900 (has links)
La géométrie moléculaire, également connue sous le nom de conformation, est la représentation la plus intrinsèque et la plus informative des molécules. Cependant, prédire des conformations stables à partir de graphes moléculaires reste un problème difficile et fondamental en chimie et en biologie computationnelles. Les méthodes expérimentales et computationelles traditionnelles sont généralement coûteuses et chronophages. Récemment, nous avons assisté à des progrès considérables dans l'utilisation de l'apprentissage automatique, en particulier des modèles génératifs, pour accélérer cette procédure. Cependant, les approches actuelles basées sur les données n'ont généralement pas la capacité de modéliser des distributions complexes et ne tiennent pas compte de caractéristiques géométriques importantes. Dans cette thèse, nous cherchons à construire des modèles génératifs basés sur des principes pour la génération de conformation moléculaire qui peuvent surmonter les problèmes ci-dessus. Plus précisément, nous avons proposé des modèles de diffusion basés sur les flux, sur l'énergie et de débruitage pour la génération de structures moléculaires. Cependant, il n'est pas trivial d'appliquer ces modèles à cette tâche où la vraisemblance des géométries devrait avoir la propriété importante d'invariance par rotation par de translation. Inspirés par les progrès récents de l'apprentissage des représentations géométriques, nous fournissons à la fois une justification théorique et une mise en œuvre pratique sur la manière d'imposer cette propriété aux modèles. Des expériences approfondies sur des jeux de données de référence démontrent l'efficacité de nos approches proposées par rapport aux méthodes de référence existantes. / Molecular geometry, also known as conformation, is the most intrinsic and informative representation of molecules. However, predicting stable conformations from molecular graphs remains a challenging and fundamental problem in computational chemistry and biology. Traditional experimental and computational methods are usually expensive and time-consuming. Recently, we have witnessed considerable progress in using machine learning, especially generative models, to accelerate this procedure. However, current data-driven approaches usually lack the capacity for modeling complex distributions and fail to take important geometric features into account. In this thesis, we seek to build principled generative models for molecular conformation generation that can overcome the above problems. Specifically, we proposed flow-based, energy-based, and denoising diffusion models for molecular structure generation. However, it's nontrivial to apply these models to this task where the likelihood of the geometries should have the important property of rotational and translation invariance. Inspired by the recent progress of geometric representation learning, we provide both theoretical justification and practical implementation about how to impose this property into the models. Extensive experiments on common benchmark datasets demonstrate the effectiveness of our proposed approaches over existing baseline methods.

Page generated in 0.088 seconds