• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 92
  • 92
  • 39
  • 20
  • 19
  • 18
  • 18
  • 17
  • 16
  • 14
  • 14
  • 12
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

The study of WNT signaling effector POP-1/TCF in c. elegans early embryos

Lo, Miao-Chia. January 2005 (has links) (PDF)
Thesis (Ph. D.) -- University of Texas Southwestern Medical Center at Dallas, 2005. / Vita. Bibliography: 144-160.
72

The immortalization process of T cells with focus on the regulation of telomere length and telomerase activity /

Degerman, Sofie, January 2010 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2010.
73

Regulation and Function of Runx2 During Chondrogenic and Osteogenic Differentiation: a Dissertation

Lengner, Christopher J. 02 December 2004 (has links)
Members of the Runx family of transcription factors play essential roles in the differentiation and development of several organ systems. Here we address the contribution of the osteoblast-related Runx gene, Runx2, to the osteogenic and chondrogenic differentiation of mesenchymal stem cells. Using a transgenic mouse model, we observe Runx2 transcription through one of its two known promoters (designated P1 in pre-cartilaginous mesenchymal condensations as early as E9.5. Runx2 gene activity is later repressed at the onset of cartilage formation, both in vivo and in vitro, necessitating examination of the regulation and function of Runx2 in mesenchymal stem cells. We demonstrate that Runx2 gene activity is repressed by the direct interaction of the homeodomain transcription factor Nkx3.2 with the proximal Runx2 P1 promoter. This repression was found to be required for the progression of BMP-induced chondrogenesis, thereby identifying Runx2 as a modulator of BMP activity in the chondrogenic as well as osteogenic differentiation program. To further understand the regulation of the Runx2 P1 promoter and to determine the contribution of P1-derived gene product, Runx2 Type II, to the formation of mineralized tissue, we have generated a Runx2 Type II-LacZ gene replacement mouse model in which the initial coding sequences and splice donor sites of the Type II isoform are replaced with the LacZ reporter gene. Activity of the endogenous P1 promoter can therefore be monitored by β-galactosidase production. Analysis of Runx2 Type II-LacZ mice demonstrates that the P1 promoter is transcriptionally most active in mature osteoblasts, but its product, Runx2 Type II is dispensable for embryonic skeletal formation. Lastly, we examine the link between growth control and osteogenic differentiation by tissue-specific deletion of the Mdm2 proto-oncogene in developing skeletal tissues of the mouse embryo. Loss of Mdm2 results in impaired bone formation, with skeletal elements exhibiting lower bone mineral content and higher porosity. Ex vivo cultures of calvarial osteoprogenitor cells exhibit severely decreased osteoblastogenesis and bone nodule formation accompanied by a failure to activate Runx2 gene activity. These findings suggest that Mdm2 is required for inhibition of p53 activity that ultimately allows for post-confluent proliferation and induction of Runx2 during maturation of the osteogenic phenotype. Taken together, our findings suggest that Runx2 modulates the commitment of progenitor cells to the osteogenic and chondrogenic lineages, and that Runx2 activity is inextricably linked to mechanisms that control cellular proliferation.
74

The Role of Itk in T Cell Development: A Dissertation

Lucas, Julie Ann 14 January 2005 (has links)
Itk is a member of the Tec family of non-receptor tyrosine kinases. It is expressed in T cells, NK cells, and mast cells. The purpose of this study was to determine the role of Itk in T cell development. Previous work from our lab and others has demonstrated that Itk is involved in signaling downstream of the T cell receptor and initial analysis of Itk-deficient mice revealed that these mice had some defects in T cell development. There are two stages of T cell development, the pre-T cell stage and the CD4+ CD8+ double positive stage, at which signals downstream of the T cell receptor are important. At the CD4+ CD8+ double positive stage, these signals direct two concurrent, but distinct processes known as repertoire selection and CD4/CD8 lineage commitment/differentiation. I show that there are only slight defects in development at the pre-T cell stage, presumably due to reduced TCR signaling. However these results clearly demonstrate that Itk is not essential at this stage of development. In contrast, repertoire selection, in particular positive selection, is significantly affected by the absence of Itk. Similarly, I show that Itk plays a role in lineage differentiation, although commitment to the appropriate lineage occurs normally in the absence of Itk.
75

Chromatin Remodeling and Transcriptional Memory: A Dissertation

Kundu, Sharmistha 18 December 2008 (has links)
Transcriptional regulation of gene expression is critical for all unicellular and multicellular organisms. The ability to selectively induce or repress expression of only a few genes from the entire genome gives cells the ability to respond to changing environmental conditions, grow and proliferate. Multicellular organisms begin life as a single totipotent cell, which undergoes many cell divisions during embryonic and later postnatal development. During this process, the dividing cells of the embryo progressively lose their pluripotency and adopt restricted cell fates. Cell fate restriction leads different cell types to gain unique transcriptional profiles. This transcriptional profile or gene expression pattern not only defines the cell types and restricts the ways in which they can respond to signals, it also has to be faithfully re-established in the progeny of these fate-restricted cells when they divide. Different mechanisms have evolved in multicellular organisms to propagate transcriptional memory of cell identity. Most of mechanisms involve modifications of chromatin such as epigenetic modification of DNA or alterations of associated histones. In contrast to multicellular organisms which have considerable cellular diversity and a long lifespan for which cell fates and transcriptional memory needs to be maintained, single celled budding yeast, Sachharomyces cerevisiae have a life cycle of about 90 minutes in normal nutrient rich conditions. However, even budding yeast have tremendous potential to respond to changing environmental conditions like nutrient availability by inducing expression of various genes. We observed that members of the GAL gene cluster, which encodes genes induced in response to and for metabolizing the sugar galactose, showed heritable transcriptional memory of previous activation. This dissertation thesis describes the studies I have done for my graduate research to define this phenomenon of transcriptional memory at the yeast GALgenes and to determine the mechanism by which it can be formed and inherited. Chapter I gives an introduction to different mechanisms of establishing transcriptional memory in unicellular and multicellular organisms. Chromatin based mechanisms have been well studied in multicellular organisms but not observed in budding yeast. We compare chromatin based or nuclear inheritance with cytoplasmic inheritance that can be observed in yeast. Chapter II describes work done to define the phenomenon of transcriptional memory at GAL1 gene. We define this as a faster rate of induction of the GAL1 gene, compared to a naïve gene, after a brief period of repression. We show that this cellular memory persists through mitosis and can be passed on to the next generation. We also show that chromatin remodeling enzymes appear to be required for rapid reinduction, raising the question if yeast may also possess chromatin associated, nuclear mechanisms for cellular memory. Chapter III describes experiments that show that cellular memory observed at GAL1 is cytoplasmic in nature and also compares our work with similar examples observed recently by other groups. Finally, Chapter IV offers a perspective of the significance of such cellular memory mechanisms in budding yeast and outlines some potential further experiments to better understand the control of GAL1 induction kinetics.
76

Conserved Nucleosome Remodeling/Histone Deacetylase Complex and Germ/Soma Distinction in <em>C. elegans</em>: A Dissertation

Unhavaithaya, Yingdee 22 August 2003 (has links)
A rapid cascade of regulatory events defines the differentiated fates of embryonic cells, however, once established, these differentiated fates and the underlying transcriptional programs can be remarkably stable. Here, we describe two proteins, MEP-1, a novel protein, and LET-418/Mi-2, both of which are required for the maintenance of somatic differentiation in C. elegans. MEP-1 was identified as an interactor of PIE-1, a germ-specific protein required for germ cell specification, while LET-418 is a protein homologous to Mi-2, a core component of the nuc1eosome remodeling/histone deacetylase (NuRD) complex. In animals lacking MEP-1 and LET-418, germline-specific genes become derepressed in somatic cells, and Polycomb group (PcG) and SET domain-related proteins promote this ectopic expression. We demonstrate that PIE-1 forms a complex with MEP-1, LET-418, and HDA-1. Furthermore, we show that the overexpression of PIE-1 can mimic the mep-1/let-418 phenotype, and that PIE-1 can inhibit the Histone deacetylase activity of the HDA-1 complex in COS cells. Our findings support a model in which PIE-1 transiently inhibits MEP-1 and associated factors to maintain the pluripotency of germ cells, while at later times MEP-1 and LET-418 remodel chromatin to establish new stage- or cell-type-specific differentiation potential.
77

Analysis of Long-Range Chromosomal Interactions in <em>Saccharomyces cerevisiae</em>: A Dissertation

Miele, Adriana 13 April 2009 (has links)
Long-range chromosomal interactions have been discovered in a number of organisms, suggesting that gene regulation through direct physical association with regulatory elements and/or other genes is a common and conserved phenomenon. This thesis investigates the relationship between direct physical contact of genomic loci and how these interactions may play a role in gene regulation. Analysis of such levels of chromosomal organization has been made possible in part by the emergence of Chromosome Conformation Capture (3C). This technique makes use of formaldehyde crosslinking to trap interacting chromosomal fragments, which can be detected after a number of manipulations. By adapting the 3C protocol for use in intact Saccharomyces cerevisiaecells, one can determine the structure of a chromosome or chromosomal region without introducing artifacts due to the harsh isolation of nuclei. A number of 3C-based technologies, such as 4C (Circular 3C or 3C-on-Chip) and 5C (3C Carbon Copy) have added to the knowledge of physical association of genes with regulatory elements and/or other genes. Here, we present a new non-biased technology that allows for determination of chromosomal interactions between all fragments throughout a genome. We present two-dimensional heatmaps of chromosomal interactions for all 16 chromosomes in yeast. These techniques promise to shed light onto the biochemical process by which clustering of genes and elements can result in up- or down-gene expression, which is still poorly understood. To understand how chromosomal interactions play a role in gene regulation, we study clustering of heterochromatic loci. Clustering of heterochromatic loci in silenced nuclear compartments is a phenomenon that has been observed throughout evolution. These clusters are thought to represent nuclear sub-compartments that are enriched in silencing proteins, while the rest of the nucleus is depleted in such factors. Chromosome III in Saccharomyces cerevisiae contains four heterochromatic regions: the two telomeres and the silent mating type loci, HML and HMR, located on either end of the chromosome. Our work describes a long-range interaction between the heterochromatic regions on chromosome III. We analyze the mechanism that drive these interactions and reveal roles for silencing proteins and proper nucleosome assembly in mediating heterochromatic clustering. In addition we identify a novel step in heterochromatin formation that is not essential for gene silencing but is required for long-range interactions.
78

Mdm2 and Mdm4 Functions in Growth Control: a Dissertation

Steinman, Heather Anne 01 June 2004 (has links)
Amplification and/or overexpression of the Mdm2 oncogene occurs in many human cancers. Mdm2 promotes cellular proliferation, interferes with apoptosis, and induces tumor formation through the negative regulation of the p53 tumor suppressor. More than thirty percent of human tumors overexpressing Mdm2 also present with alternatively spliced Mdm2 isoforms that cannot directly bind p53. The presence of Mdm2 isoforms in tumors correlates with a higher tumor grade and a poorer prognosis for the patient. To investigate the function of Mdm2 isoforms in tumorigenesis, we have isolated a number of Mdm2 splice forms from tumors obtained from Mdm2-transgenic mice and find that the most frequently observed splice form in human tumors, Mdm2-b, is conserved in mice. Although the Mdm2-b protein is incapable of binding to p53 and is unable to localize to the nucleus, we demonstrate that Mdm2-b promotes cell growth in NIH3T3 cells, Rb-deficient, p19-deficient, and p53-deficient primary cells. We also show that Mdm2-b inhibits apoptosis in response to serum withdrawal and restimulation, doxorubicin treatment, and TNF-alpha administration. Mdm2-b induces foci formation in vitro and directly contributes to tumor formation in GFAP-Mdm2 transgenic mice. We propose that Mdm2-b promotes tumor growth by upregulating RelA (P65) protein levels and activity in a p53-independent manner. To better understand additional functions of Mdm2 that are p53-dependent, we have generated an Mdm2 conditional mouse model. Using primary mouse embryonic fibroblasts derived from Mdm2 conditional mice, we demonstrate that p21 is required for p53-dependent apoptosis initiated by Mdm2 loss. In support of this observation, we also note that p21-loss partially rescues embryonic lethality of Mdm2 null mice. We further show that p21-loss partially rescues the embryonic lethality caused by the loss of the Mdm2 family member, Mdm4. We address the possibility that Mdm2 and Mdm4 may play redundant roles during embryonic development and find that Mdm2 overexpression fully rescues the embryonic lethality resulting from Mdm4 loss. Our findings demonstrate that both Mdm2 and Mdm4 play critical roles in modulation of the p53 tumor suppressor pathway and that their deregulation can result in tumor formation through both p53-dependent and independent pathways.
79

Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes

Graubert, T.A., Shen, D., Ding, L., Okeyo-Owuor, T., Lunn, C.L., Shao, J., Krysiak, K., Harris, C.C., Koboldt, D.C., Larson, D.E., McLellan, M.D., Dooling, D.J., Abbott, R.M., Fulton, R.S., Schmidt, H., Kalicki-Veizer, J., O'Laughlin, M., Grillot, M., Baty, J., Heath, S., Frater, J.L., Nasim, Md. Talat, Link, D.C., Tomasson, M.H., Westervelt, P., DiPersio, J.F., Mardis, E.R., Ley, T.J., Wilson, R.K., Walter, M.J. January 2012 (has links)
No / Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders that often progress to chemotherapy-resistant secondary acute myeloid leukemia (sAML). We used whole-genome sequencing to perform an unbiased comprehensive screen to discover the somatic mutations in a sample from an individual with sAML and genotyped the loci containing these mutations in the matched MDS sample. Here we show that a missense mutation affecting the serine at codon 34 (Ser34) in U2AF1 was recurrently present in 13 out of 150 (8.7%) subjects with de novo MDS, and we found suggestive evidence of an increased risk of progression to sAML associated with this mutation. U2AF1 is a U2 auxiliary factor protein that recognizes the AG splice acceptor dinucleotide at the 3' end of introns, and the alterations in U2AF1 are located in highly conserved zinc fingers of this protein. Mutant U2AF1 promotes enhanced splicing and exon skipping in reporter assays in vitro. This previously unidentified, recurrent mutation in U2AF1 implicates altered pre-mRNA splicing as a potential mechanism for MDS pathogenesis.
80

An interaction between KSHV ORF57 and UIF provides mRNA-adaptor redundancy in herpesvirus intronless mRNA export

Jackson, B.R., Boyne, James R., Noerenberg, M., Taylor, A., Hautbergue, G.M., Walsh, M.J., Wheat, R., Blackbourn, D.J., Wilson, S.A., Whitehouse, A. January 2011 (has links)
No / The hTREX complex mediates cellular bulk mRNA nuclear export by recruiting the nuclear export factor, TAP, via a direct interaction with the export adaptor, Aly. Intriguingly however, depletion of Aly only leads to a modest reduction in cellular mRNA nuclear export, suggesting the existence of additional mRNA nuclear export adaptor proteins. In order to efficiently export Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs from the nucleus, the KSHV ORF57 protein recruits hTREX onto viral intronless mRNAs allowing access to the TAP-mediated export pathway. Similarly however, depletion of Aly only leads to a modest reduction in the nuclear export of KSHV intronless mRNAs. Herein, we identify a novel interaction between ORF57 and the cellular protein, UIF. We provide the first evidence that the ORF57-UIF interaction enables the recruitment of hTREX and TAP to KSHV intronless mRNAs in Aly-depleted cells. Strikingly, depletion of both Aly and UIF inhibits the formation of an ORF57-mediated nuclear export competent ribonucleoprotein particle and consequently prevents ORF57-mediated mRNA nuclear export and KSHV protein production. Importantly, these findings highlight that redundancy exists in the eukaryotic system for certain hTREX components involved in the mRNA nuclear export of intronless KSHV mRNAs.

Page generated in 0.0627 seconds