21 |
Characterisation of XPD from Sulfolobus acidocaldarius : an iron-sulphur cluster containing DNA repair helicaseRudolf, Jana January 2007 (has links)
DNA is constantly damaged by a variety of exogenous and endogenous sources. To maintain the integrity of the genome, different DNA repair mechanisms have evolved, which deal with different kinds of DNA damage. One of the DNA repair pathways, Nucleotide Excision Repair (NER), is highly conserved throughout the three kingdoms of life and deals mainly with lesions arising in the DNA duplex after exposure to UV-light. The NER pathway in archaea is more closely related to that of eukarya, although the overall process is not yet well understood. This thesis describes the isolation and characterisation of one of the repair factors, XPD, from the crenarchaeon Sulfolobus acidocaldarius (SacXPD). SacXPD was first identified due to its homology with the eukaryal XPD protein. In eukarya XPD is the 5a' -> 3a' helicase involved in opening the DNA duplex around a damaged site. In eukarya, XPD is part of a 10-subunit complex, where it fulfils important structural roles and takes part in NER, transcription initiation from RNA polymerase II promoters and cell cycle regulation. The archaeal protein on the contrary is a monomer and a 5a' -> 3a' SF2 DNA helicase as its eukaryal counterpart. Its cellular functions, however, are unclear. Upon purification of SacXPD, it was discovered that the protein binds an ironsulphur cluster (FeS), which is essential for its helicase activity, but not for any other enzymatic functions, such as the ATP hydrolysing activity. The FeS cluster domain was not only identified in archaeal XPD, but also in eukaryal XPD and other related eukaryal helicases, such as FancJ. The presence of the FeS cluster was confirmed in the eukaryotic XPD homologue Rad3 from Saccharomyces cerevisiae. Mutagenesis studies were used to investigate a possible function of the FeS cluster, which may be used to engage ssDNA during the duplex unwinding process. This would actively distort the ss/ ds DNA junction. In addition, the resulting bending of the clamped single DNA strand could be used to avoid reannealing. The consequences of some human mutations introduced into the SacXPD gene were investigated and could contribute to our understanding of the development of human diseases.
|
22 |
DNA Repair Mechanisms, Aflatoxin B1-Induced DNA Damage and CarcinogenesisMULDER, JEANNE E 18 October 2013 (has links)
The studies described in this thesis investigated the relationship between DNA repair mechanisms, aflatoxin B1 (AFB1)-induced DNA damage and carcinogenesis. Mice deficient in 8-oxoguanine glycosylase (OGG1, the rate-limiting enzyme in repair of oxidized guanine), mice heterozygous for OGG1, and wild type mice, were exposed to a single tumourigenic dose (50 mg/kg) of AFB1. Neither ogg1 genotype nor AFB1 treatment affected levels of oxidized guanine in lung or liver 2 h post-treatment. ogg1 (-/-) mice had increased susceptibility to AFB1 toxicity, as reflected by increased mortality within one week of AFB1 exposure. AFB1 treatment did not significantly increase lung or liver tumourigenesis compared to DMSO controls. No difference was observed between ogg1 genotypes, although a non-significant trend towards AFB1-treated ogg1 (-/-) mice being more susceptible to tumourigenicity was apparent. Overall, deletion of ogg1 did not significantly affect AFB1-induced DNA damage or tumourigenicity, suggesting that oxidized guanine may not be a major contributor to AFB1-induced tumourigenesis.
The effects of AFB1 on DNA repair were assessed in p53 (a protein implicated in regulation of DNA repair) wild type and heterozygous mice. p53 (+/+) mice treated with 0, 0.2 or 1.0 ppm AFB1 for 26 weeks had increased nucleotide excision repair (NER) activities in lung and liver compared to control, which may represent an adaptive response to AFB1-derived DNA adducts. In p53 (+/-) mice, the AFB1-induced increase in NER was significantly attenuated, suggesting that loss of one allele of p53 limits the ability of NER to up-regulate in response to AFB1-induced DNA damage.
Twenty-six week exposure to AFB1 did not affect base excision repair (BER) in p53 (+/+) mouse lung or liver compared to control. BER was significantly decreased in livers from mice exposed to 1.0 ppm AFB1 compared to those exposed to 0.2 ppm AFB1, a result that was not due to liver cell death or to altered levels of OGG1 protein. In lungs and livers of p53 (+/-) mice, BER activity was unchanged by AFB1. As such, the difference in BER response between 0.2 ppm and 1.0 ppm AFB1 treatment seen in the p53 (+/+) mice appears to be p53 dependent. / Thesis (Ph.D, Pharmacology & Toxicology) -- Queen's University, 2013-10-17 22:24:31.577
|
23 |
Functional relevance of spontaneous alternative splice variants of xeroderma pigmentosum genes: Prognostic marker for skin cancer risk and disease outcome?Lehmann, Janin 04 May 2017 (has links)
No description available.
|
24 |
Investigation of Novel Functions for DNA Damage Response and Repair Proteins in Escherichia coli and HumansHilton, Benjamin A 01 May 2016 (has links)
Endogenous and exogenous agents that can damage DNA are a constant threat to genome stability in all living cells. In response, cells have evolved an array of mechanisms to repair DNA damage or to eliminate the cells damaged beyond repair. One of these mechanisms is nucleotide excision repair (NER) which is the major repair pathway responsible for removing a wide variety of bulky DNA lesions. Deficiency, or mutation, in one or several of the NER repair proteins is responsible for many diseases, including cancer. Prokaryotic NER involves only three proteins to recognize and incise a damaged site, while eukaryotic NER requires more than 25 proteins to efficiently recognize and incise a damaged site. XPC-RAD23B (XPC) is the damage recognition factor in eukaryotic global genome NER. The association rate of XPC to damaged DNA has been extensively studied; however, our data suggests that the dissociation of the XPC-DNA complex is the rate-limiting step in NER. The factor that verifies DNA-damage downstream of XPC is XPA. XPA also has been implicated in binding of ds-ssDNA junctions and has been found to bind at or near double-strand break sites in the premature aging syndrome Hutchinson-Gilford progeria (HGPS). This role for XPA is outside of its known function in NER and suggests that XPA may bind at collapsed replication forks in HGPS that are unprotected due to a lack of binding by replication proteins. Along with XPC and XPA, ataxia telangiectasia and Rad3-related (ATR) is activated in response to DNA damage and initiates the cell cycle checkpoint pathway to rescue cells from genomic instability. We found that ATR functions outside of its known role in the checkpoint signaling cascade. Our data demonstrate that ATR can rescue cells from apoptosis by inhibiting cytochrome c release at the mitochondria though direct interaction with the outer mitochondrial membrane and the proapoptotic protein tBid. The role of ATR in apoptosis is regulated by Pin1, which can change the structure of ATR at the backbone level. All of the results presented here suggest novel roles for DNA repair proteins in the maintenance of genome stability.
|
25 |
Biotransformation and DNA Repair in 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone-Induced Pulmonary CarcinogenesisBrown, PAMELA 17 November 2008 (has links)
Studies described in this thesis were at aimed at characterizing the mechanisms involved in the pulmonary carcinogenicity of the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), by addressing two critical determinants of carcinogenicity; biotransformation and DNA repair.
The contributions of cytochrome P450 (CYP) 2A13 and CYP2A6 to NNK biotransformation in human lung microsomes were investigated. Based on total bioactivation and detoxification of NNK and its keto-reduced metabolite, 4 (methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), subjects could be classified as either high or low bioactivators and detoxifiers. Data from all of 29 individuals revealed no correlations between levels of CYP2A mRNA, enzyme activity or immunoinhibition and the degree of total NNK bioactivation or detoxification. However, subgroups were identified for whom CYP2A13 mRNA correlated with total NNK and NNAL bioactivation (n=4) and NNAL detoxification (n=5). Although results do not support CYP2A13 or CYP2A6 as predominant contributors to NNK metabolism in lung of all individuals, CYP2A13 appears to be important in some.
The involvement of nucleotide excision repair (NER) in the repair of NNK-induced DNA pyridyloxobutylation was assessed. Extracts from NER-deficient cells were less active at repairing pyridyloxobutyl (POB) adducts on plasmid DNA than were extracts from normal cells, and NER-deficient cells were more susceptible to 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc)-induced cytotoxicity, demonstrating the participation of NER in the repair of POB-DNA adducts.
The role of DNA repair in contributing to inter-organ susceptibility to NNK-induced carcinogenesis was investigated. POB adduct repair was greater in extracts from mouse liver than lung, and activities in lungs of NNK-treated mice were lower than those of saline-treated mice, while repair was 3 times higher in livers of NNK-treated mice relative to control. NNK treatment decreased incision of POB adducts by 92 % in lung extracts and increased incision by 169 % in liver extracts. In addition, NNK altered the levels and binding to POB damage of key incision proteins. These results suggest that lower NER incision activity and NNK-mediated alterations in levels and activities of incision proteins contribute to the relative susceptibility of mouse lung to NNK-induced carcinogenesis. / Thesis (Ph.D, Pharmacology & Toxicology) -- Queen's University, 2008-11-13 14:10:01.603
|
26 |
Establishing the comet assay to determine the effects of different perturbations on DNA repair capacity / by Anzaan SteenkampSteenkamp, Anzaan January 2011 (has links)
Single cell gel electrophoresis (SCGE), more commonly known as the Comet assay, is
an uncomplicated, affordable and versatile method for investigating DNA damage and
repair. Existing comet–assay based methods were modified and applied in this study in
order to examine the effects of different perturbations on the DNA repair capacity of
different samples.
Mitochondrial functioning has a vast effect on overall cell physiology and does not
simply involve the production of energy in the form of ATP that sustains common
biological processes, but is also associated with important cellular occurrences such as
apoptosis and ROS production. It is suggested that a change in mitochondrial function
may lead to extensive ROS production which may negatively affect macromolecules,
including proteins involved in DNA repair pathways, and impaired energy formation
which in turn may hamper the proper occurrence of energy driven processes. Complex I
and ?III knock–down systems established in 143B cells are used to investigate the effect
that perturbations of the energy metabolism may have on DNA repair capacity.
Metallothioneins (MTs) are known to play an imperative role in trace element
homeostasis and detoxification of metals and are effective ROS scavengers. The prooxidant
environment that heavy metal imbalance causes may result in mutagenesis and
transformation through DNA damage. It is suggested that an imbalance in the metal
homeostasis caused by MT knock–out may create an environment favourable for DNA
damage formation and at the same time impair DNA repair pathways. Because of the
multi–functionality and involvement of metallothioneins in such a wide variety of
biological processes, it was considered interesting and essential to extend the
investigation on the effect of the absence of metallothioneins on DNA repair. A
metallothionein I and ?II knock–out mouse model is employed to determine the effect of
MT knock–out on DNA repair capacity.
It was clear from the results obtained that transfection of cells, as used to investigate a
perturbation in the energy metabolism in 143B cells, has an impairing effect on DRC. It
was also confirmed that metallothioneins play an important and diverse role in cell
biology since the absence thereof inhibits both BER and NER. / Thesis (M.Sc. (Biochemistry))--North-West University, Potchefstroom Campus, 2011.
|
27 |
Establishing the comet assay to determine the effects of different perturbations on DNA repair capacity / by Anzaan SteenkampSteenkamp, Anzaan January 2011 (has links)
Single cell gel electrophoresis (SCGE), more commonly known as the Comet assay, is
an uncomplicated, affordable and versatile method for investigating DNA damage and
repair. Existing comet–assay based methods were modified and applied in this study in
order to examine the effects of different perturbations on the DNA repair capacity of
different samples.
Mitochondrial functioning has a vast effect on overall cell physiology and does not
simply involve the production of energy in the form of ATP that sustains common
biological processes, but is also associated with important cellular occurrences such as
apoptosis and ROS production. It is suggested that a change in mitochondrial function
may lead to extensive ROS production which may negatively affect macromolecules,
including proteins involved in DNA repair pathways, and impaired energy formation
which in turn may hamper the proper occurrence of energy driven processes. Complex I
and ?III knock–down systems established in 143B cells are used to investigate the effect
that perturbations of the energy metabolism may have on DNA repair capacity.
Metallothioneins (MTs) are known to play an imperative role in trace element
homeostasis and detoxification of metals and are effective ROS scavengers. The prooxidant
environment that heavy metal imbalance causes may result in mutagenesis and
transformation through DNA damage. It is suggested that an imbalance in the metal
homeostasis caused by MT knock–out may create an environment favourable for DNA
damage formation and at the same time impair DNA repair pathways. Because of the
multi–functionality and involvement of metallothioneins in such a wide variety of
biological processes, it was considered interesting and essential to extend the
investigation on the effect of the absence of metallothioneins on DNA repair. A
metallothionein I and ?II knock–out mouse model is employed to determine the effect of
MT knock–out on DNA repair capacity.
It was clear from the results obtained that transfection of cells, as used to investigate a
perturbation in the energy metabolism in 143B cells, has an impairing effect on DRC. It
was also confirmed that metallothioneins play an important and diverse role in cell
biology since the absence thereof inhibits both BER and NER. / Thesis (M.Sc. (Biochemistry))--North-West University, Potchefstroom Campus, 2011.
|
28 |
Réparation par excision de nucléotides des dommages induits par rayons ultraviolets dans les mélanomes humainsRajotte, Vincent 08 1900 (has links)
Les mélanomes malins (MM) constituent le deuxième type de cancer le plus fréquent chez les jeunes adultes canadiens (entre 20 et 44 ans) ainsi qu’un des rares cancers dont l’incidence augmente annuellement. À moins que les MM ne soient excisés à temps par chirurgie, les chances de survie des patients sont pratiquement nulles puisque ce type de tumeur est très réfractaire aux traitements conventionnels. Il est bien connu que l’exposition aux rayons ultraviolets (UV), induisant des photoproduits génotoxiques, est une déterminante majeure dans l’acquisition de MM. À cet effet, la réparation par excision de nucléotides (NER) est la ligne de défense principale contre le développement des mélanomes puisqu’elle est la voie de réparation prépondérante en ce qui a trait aux dits photoproduits. Malgré cela, la contribution potentielle de défauts de la NER au développement des MM dans la population normale n’est toujours pas bien établie. Notre laboratoire a précédemment développé une méthode basée sur la cytométrie de flux qui permet de mesurer la NER en fonction du cycle cellulaire. Cette méthode a déjà mise en évidence qu’une déficience de l’activité de la protéine ATR peut mener à une déficience de la NER exclusive à la phase S dans des fibroblastes humains. Pareillement, nous avons démontré que plusieurs lignées cellulaires cancéreuses modèles comportent une déficience en NER en phase S, suggérant qu’une telle déficience puisse caractériser certains types de cancers. Nous avons voulu savoir si une déficience en NER en phase S pouvait être associée à une proportion significative de mélanomes et si le tout pouvait être attribuable à une diminution de l’activité d’ATR. Nos objectifs ont donc été de : (i) mesurer l’efficacité de la NER en fonction du cycle cellulaire dans les MM en comparaison avec les mélanocytes primaires, (ii) vérifier si le niveau d’activité d’ATR corrèle avec l’efficacité de la NER en phase S dans les lignées de MM et (iii) voir si un gène fréquemment muté dans les mélanomes (tels PTEN et BRAF) pouvait coopérer avec ATR pour réguler la NER en phase S dans les mélanomes. Nous avons démontré que 13 lignées de MM sur 16 ont une capacité grandement diminuée à réparer les photoproduits induits par UV spécifiquement en phase S. De plus, cette déficience corrèle fortement avec une réduction de l’activation d’ATR et, dans plusieurs lignées de MM, avec une phosphorylation d’Akt plus importante. L’utilisation d’ARN interférent ou d’un inhibiteur du suppresseur de tumeurs PTEN, a permis, en plus d’augmenter la phosphorylation d’Akt, de réduire la réparation des photoproduits et l’activation d’ATR dans les cellules en phase S. En addition, (i) l’expression ectopique de la protéine PTEN sauvage dans des lignées déficientes en PTEN (mais pas d’une protéine PTEN sans activité phosphatase) ou (ii) l’inhibition pharmacologique d’Akt a permis d’augmenter la réparation en phase S ainsi que l’activation d’ATR. En somme, cette étude démontre qu’une signalisation d’ATR dépendante de PTEN/Akt amenant à une réparation déficiente des photoproduits génomiques causés par les UV en phase S peut être déterminante dans le développement des mélanomes induits par UV. / Malignant melanoma (MM) is the second most frequent neoplasia among young Canadian adults (aged 20-44); moreover the incidence of this disease continues to rise annually at an alarming rate. Unless primary melanoma is diagnosed early and promptly resected the patient prognosis is dismal since this deadly tumour type metastasizes extremely aggressively and is highly refractory to conventional treatment protocols. It is well established that exposure to UV light, and subsequent induction of genotoxic DNA photoproducts, is a primary determinant in the initiation of MM. Furthermore nucleotide excision repair (NER) clearly represents a critical frontline defence against MM because it is the only human pathway designed to remove the aforementioned DNA photoproducts. Despite this, the potential contribution of NER defects to sporadic MM development in the general population has remained unclear. Our laboratory previously developed a novel flow cytometry-based assay to evaluate the efficiency of NER as a function of cell cycle. This method was employed to demonstrate that functional ATR kinase is strictly required for NER during S phase in primary human fibroblasts. Intriguingly we also reported that many model tumour cell lines are deficient in NER uniquely in S phase populations, raising the possibility that such a defect might be characteristic of certain types of cancers. We therefore hypothesized that a significant proportion of human MM cell lines may exhibit reduced NER capacity specifically during S phase, and that this in turn might be attributeable to reduced ATR signaling. To test this hypothesis, three major specific aims were proposed: (i) To measure the efficiency of NER as a function of cell cycle among a panel of human MM cell lines and in primary melanocytes; (ii) To investigate whether any correlation exists between NER status and ATR activity during S phase in human MM cell lines; (iii) To investigate whether frequently mutated genes in melanoma (eg., PTEN, BRAF) might cooperate with ATR to regulate S phase-specific NER in MM cell lines. We were able to demonstrate that, in fact, 13/16 MM cell lines display remarkably diminished capacity to remove UV-induced DNA photoproducts specifically during S phase. Furthermore this defect correlates strongly with reduced activation of ATR kinase and, for a majority of MM, higher Akt phosphorylation levels. RNAi-mediated knockdown of the PTEN tumour suppressor, while stimulating Akt phosphorylation as expected, also engenders reductions in both photoproducts repair and ATR activation in S phase cells. In addition, (i) ectopic expression in PTEN-null strains of wild type PTEN but not of PTEN variants deficient in phosphatase activity, or (ii) pharmacological inhibition of Akt, significantly rescue S phase-specific repair as well as ATR activation. Our data indicate that reduced PTEN/Akt-dependent ATR signaling leading to defective repair of UV DNA photoproducts uniquely during S phase may represent an heretofore unrecognized major determinant in sunlight-induced melanoma development.
|
29 |
Déficience dans la réparation par excision de nucléotides en phase S induite par la séquestration du facteur de réplication RPAAngers, Jean-Philippe 12 1900 (has links)
Introduction Les lésions induites par les rayons UV peuvent causer des blocages dans la réplication de l'ADN. Ces dommages sont éliminés par le processus moléculaire très conservé de réparation par excision de nucléotides (NER). Nous avons précédemment démontré que la protéine ATR, une kinase majeure impliquée dans le stress réplicatif, est requise pour une NER efficace, et ce exclusivement durant la phase S. Des résultats subséquents ont suggéré que ce prérequis n’était pas lié à la réponse induite par ATR, mais plutôt d’une conséquence globale causée par la présence de stress réplicatif. En ce sens, nous mettons l’emphase qu’après irradiation UV, le complexe RPA joue un rôle crucial dans l'activation des mécanismes de NER ainsi que dans le redémarrage des fourches de réplication bloquées.
Hypothèses: En général, les mutations qui confèrent une augmentation du stress réplicatif engendrent une séquestration excessive du facteur RPA aux fourches de réplication bloquées ce qui réduit son accessibilité pour le NER.
Méthodes et résultats: Le modèle de la levure a été choisi pour vérifier cette hypothèse. Nous avons développé un essai de NER spécifique à chacune des phases du cycle cellulaire pour démontrer que les cellules déficientes en Mec1, l’homologue d’ATR, sont défectives dans la réparation par excision de nucléotides spécifiquement en phase S. De plus, plusieurs autres mutants de levure, caractérisés par un niveau de dommages spontanés élevé, ont aussi exhibé un défaut similaire. Ces mutants ont démontré une fréquence et une intensité de formation de foyers de RPA plus élevée. Finalement, une diminution partielle de RPA dans les levures a induit un défaut significatif dans le NER spécifiquement durant la phase S.
Conclusion: Nos résultats supportent la notion que la séquestration de RPA aux fourches de réplication endommagées durant la phase S prévient son utilisation pour la réparation par excision de nucléotides ce qui inhibe fortement l'efficacité de réparation. Cette étude chez la levure facilite l’élucidation du phénomène analogue chez l’humain et, ultimement, comprend des implications majeures dans la compréhension du mécanisme de développement des cancers UV-dépendants. / Introduction Replication-blocking UV-induced DNA adducts are removed by the highly-conserved nucleotide excision repair (NER) pathway. We previously demonstrated that ATR kinase, a preeminent responder to replicative stress, is required for efficient NER exclusively during S phase. Subsequent data suggested that this requirement is not a manifestation of ATR signaling per se, but rather more broadly reflects some consequence of replication stress. In this respect we emphasize that after UV treatment, heterotrimeric RPA plays essential and independent roles in both NER and restart of blocked replication forks.
Hypothesis: In general, mutations which confer increased replicative stress engender excessive sequestration of RPA at blocked replications forks which in turn reduces the availability of this factor for NER.
Methods and Results: The powerful yeast model was chosen to address this hypothesis. We developed a cell-cycle-specific DNA repair assay to demonstrate that cells deleted for Mec1, the yeast ATR homolog, are defective in S phase-specific NER. Moreover several other yeast mutants, i.e., ones characterized by elevated levels of spontaneous DNA damage, exhibited a similar defect. These mutants also displayed increased frequency and intensity of RPA focus formation. Finally, degron-mediated depletion of RPA in wild-type cells resulted in significant inhibition of NER uniquely during S.
Conclusion: Our data support the notion that RPA sequestration at blocked replication forks in yeast undergoing high levels of replication stress abrogates NER during S phase. This work in yeast facilitates elucidation of the analogous phenomenon in humans and, ultimately, harbours implications for undestanding the mechanism of UV-associated skin cancer development.
|
30 |
Avaliação do dano de DNA em pacientes pediátricos com leucemia linfoide aguda durante a terapia de induçãoSantos, Rafael Pereira dos January 2016 (has links)
O câncer é a primeira causa de mortes por doença, após 1 ano de idade, até o final da adolescência, excetuando aquelas relacionadas aos acidentes e à violência. A Leucemia Linfoide Aguda (LLA) afeta células linfoides e agrava-se rapidamente. São os tumores mais frequentes na infância e representam um terço de todas as neoplasias malignas nesta faixa etária. Em média, a taxa de cura excede 70%, todavia, apesar dos avanços das últimas décadas, os índices de crianças que apresentam recidiva da doença continua significativo. Danos endógenos ao DNA ocorrem numa frequência altíssima, além dos danos causados por terapias antitumorais. Alteração no reparo ao dano do DNA pode induzir mecanismos de resistência ao tratamento quimioterápico, resultando em aumento do reparo de lesões do DNA. Reparo por Excisão de Nucleotídeos (NER) é a via de reparo de DNA mais versátil e flexível nas células. Seus componentes estão sendo estudados como biomarcadores de prognóstico e terapias-alvo. No entanto, alguns relatórios têm abordado danos de DNA em Leucemia Linfoide Aguda (LLA) pediátrica. Neste estudo, realizamos um estudo de acompanhamento observacional em pacientes pediátricos para avaliar os danos do DNA pelo Ensaio Cometa Alcalino e expressão gênica da via de NER durante a indução da quimioterapia. Amostras de medula óssea (MO) ao diagnóstico, dia 15 (D15) e 30 (D30) do tratamento foram coletadas de 28 pacientes com LLA. Não houve aumento no índice de dano. No entanto, houve uma redução de células com baixo danos na comparação do D35 com o diagnóstico. Este resultado se confirmou em pacientes que apresentaram doença residual mínima positiva. A via de NER permaneceu constante, no entanto, em um único paciente, foi observada uma diminuição significativa da expressão dos genes, talvez devido ao silenciamento ou a regulação negativa das vias de reparo. Níveis de danos e reparação do DNA podem influenciar o resultado clínico, estar envolvidos na resistência aos fármacos e potencializar o risco de recidiva. Este é o primeiro estudo que avalia o dano ao DNA em amostras de MO de pacientes pediátricos com LLA. Apesar do pequeno número de pacientes alocados para o estudo, a partir dos achados é possível concluir que complexos de reparo merecem ser investigados a curto e a longo prazo. Acompanhamento dos resultados do paciente vai ajudar a elucidar a implicação dos nossos achados em taxas de cura e de recidiva. / Cancer is the leading cause of death by disease after 1 year old until the end of adolescence, except those related to accidents and violence. Acute Lymphoid Leukemia (ALL) affects lymphoid cells and worsens quickly. They are the most frequent tumors in childhood and account for a third of all malignancies in this age group. On average, the cure rate exceeds 70%, however, despite the progress of recent decades, rates of children with disease recurrence remains significant. Endogenous DNA damage occurs at a very high frequency, in addition to the damage caused by anti-tumor therapies. Change in the repair of DNA damage can induce resistance mechanisms to chemotherapy, resulting in increased repair of DNA lesions. Nucleotide Excision Repair (NER) pathway is the more versatile and flexible DNA repair in cells. Its components are being studied as prognostic biomarkers and targeted therapies. However, there are some reports of DNA damage in pediatric Acute Lymphoid Leukemia (ALL). In this study, we conducted an observational follow-up study in pediatric patients to assess DNA damage by alkaline comet assay and gene expression of NER pathway during induction chemotherapy. Bone marrow (BM) samples at diagnosis, 15th (D15) and 30th (D30) of treatment were collected from 28 patients with ALL. There was no increase in damage index. However, there was a reduction of cells with low damage in comparison to the D35 diagnosis. This result was confirmed in patients with positive minimal residual disease. The NER pathway remained constant, however, in one patient, a significant decrease of gene expression was observed perhaps due to the silencing or down-regulation of repair pathways. Damage levels and DNA repair can influence the clinical result and may be involved in drug resistance and enhance the risk of recurrence. This is the first study to assess DNA damage in BM samples of pediatric patients with ALL. Despite the small number of patients allocated to the study, from the findings we conclude that repair complex deserves to be investigated in the short and long term. Monitoring patient’s outcomes will help to access the implication of our findings in cure and relapse rates.
|
Page generated in 0.0929 seconds