Spelling suggestions: "subject:"nutrient""
551 |
Evaluating Nutrient Availability in Low Fertility Soils With Resin Capsules and Conventional Soil TestsJones, Mary Pletsch 06 July 2011 (has links) (PDF)
Commonly used soil analysis and resin capsule procedures are used to assess nutrient status in fertile soils, but their validity in semi-arid ecosystems is unknown. Three studies were performed to assess resin capsule effectiveness in semi-arid ecosystems. An incubation study was completed in which loamy sand and sandy clay loam soils were treated with rates of N, P, Fe and Zn. Each soil treatment was implanted with a resin capsule and incubated for 60 or 120 days. Resin capsules reflected NH4-N and P fertilizer at low rates in the loamy sand. NO3-N reflected rates in both soils, but did not reflect Fe or Zn application. Resin capsule NH4-N was a better indicator than KCl-extractable NH4-N, but resin capsule NO3-N was not as effective as water extraction, and resin capsule P was poor compared to NaHCO3-P. A second study was performed in glasshouse conditions using the incubation study soils. Soils were treated with rates of N, P and resin capsules were placed in pots. Pots were seeded with squirreltail grass (Elymus elymoides) and placed in a glasshouse. Resin capsules were removed at 120 days, soil samples taken, grass harvested and yield measured. Yield and total nutrient removal was correlated to resin NH4-N, marginally related to resin or soil NO3-N, and unrelated to resin P. Yield and total nutrient removal was correlated with application rates and resin NH4-N and NaHCO3-extracted P. The third field study, compared two sites with rates of N and P application were established on clay loam and sandy loam soils. Resin capsule and conventional soil tests for NO3-N, NH4-N and P were measured and plant nutrient status examined. Resin capsules were removed and replaced and soil samples taken every 90 days. Resins P was not related to P application or to plant tissue P but NaHCO3-extracted P was, while resin NO3-N, KCl-extracted NO3-N and NH4-N were correlated to N application and plant N. Soil test P was more effective in predicting P status and bioavailability than resin capsules. Resin NH4-N and NO3-N predicted N status and bioavailability, but soil tests were just as effective in semi-arid conditions.
|
552 |
Importance of Placement Depth in Evaluating Soil Nitrogen, Phosphorus, and Sulfur Using Ion Exchange Resin Capsules in Semi-Arid, Low Fertility SoilsBuck, Rachel Lynn 01 December 2013 (has links) (PDF)
Ion exchange resin capsules provide a possible alternative to conventional soil testing procedures. Previous studies with semi-arid, low fertility soils observed poor relationships with poorly mobile nutrients such as phosphorus (P). We propose that placement depth may improve those relationships. Our objective was to (1) determine if placement depth could improve resin capsule estimation of the bioavailability of nitrogen (N), P, and sulfur (S) and (2) to determine if resin capsules can effectively estimate S availability in semi-arid, low fertility soils. Field sites were established in Rush and Skull Valleys, Utah on loam and sandy loam soils, respectively. Fertilizer was surface applied as ammonium sulfate and triple superphosphate with six N, P and S treatments (0, 5.5, 11, 22, 44 and 88 kg ha-1 of N and P2O5 and 0, 7, 14, 28, 56 and 112 kg ha-1 of S). Thirty 4.0-m2 plots were established at each field location. Resin capsules were placed three per plot at 0–5, 5–10, and 10–15 cm deep in the soil and soil samples taken at respective depths. The capsules were removed and replaced after approximately 90 d. Final removal and soil sampling occurred approximately 240 d later. For the second study, fertilizer was surface applied as ammonium sulfate with six S treatments (0, 7, 14, 28, 56 and 112 kg ha-1 of S) with one resin capsule placed in each 4.0-m2 plot at a depth of 5 cm in the soil. Resin capsules were removed and replaced approximately every 90 d for a total of four samplings. Soil samples were taken with every resin capsules install and removal. In the first study, bicarbonate extractable P was significantly related to P application at all depths and times except the two lowest depths at the time of final sampling, and resin capsule P was only related to P application 398 days after application in the 0–5 and 5–10 cm depths. However, this is an improvement in estimates of bioavailability compared to a single placement depth. The 5–10 cm depth was the best for placement for determination of NH4-N, and resin capsules improved upon soil test estimates. For NO3-N, depth was not important, but resin capsules had a stronger relationship with N applied than the soil test 398 d after application. In addition, both resin capsules and the S soil test were related to S applied, but resin capsules were more able to pick up S cycling through the system. In the second study resin capsules and conventional soil tests were both effective in distinguishing between fertilizer rates, though only the conventional soil test was related to S applied at the last sampling (366 d after fertilizer application). Overall resin capsules were effective at reflecting application rates, and may be a good tool to estimate nutrient bioavailability. Correlation with plant uptake is required to determine if soil tests or resin capsules were a better estimate of bioavailable nutrients.
|
553 |
The Fate of Nitrogen and Phosphorus from a SImulated Highway Cross-SectionWasowska, Zuzanna 01 January 2014 (has links)
Nutrient pollution as a result of excessive fertilizer application is of major concern for Florida's water resources. Excess fertilizer can be lost either via surface runoff or by leaching through the soil mass eventually reaching water bodies and leading to eutrophication. The focus of this study is to analyze the effect of low rainfall intensities and overland flow from an adjacent roadway surface on the loss of nutrients from two different fertilizers. This study focuses on the fate of the nitrogen and phosphorus present in fertilizers utilized by the Florida Department of Transportation for the stabilization of highway embankments. This research was performed on a field-scale test bed and rainfall simulator located at the Stormwater Management Academy at the University of Central Florida. The loss of nutrients was measured from two soil and sod combinations typically found in Florida and used for highway stabilization -Pensacola Bahia on AASHTO A-2-4 soil and Argentine Bahia on AASHTO A-3 soil. Two different fertilizers were analyzed, an all-purpose, quick-release 10-10-10 (N-P-K) fertilizer previously used by FDOT, and the new slow-release 16-0-8 (N-P-K) fertilizer, both applied at a rate of 0.5 lb/1000 ft2 consistent with FDOT's practice. Each combination was analyzed under two rainfall intensities: 0.1 in/hr and 0.25 in/hr at a slope consistent with typical highway cross-sections found in Florida. Nutrient losses were measured by collection of runoff and/or baseflow that escaped the test bed. Additionally, from the soil samples collected throughout the testing period, the mass of the nutrients was compared to the mass balances values based on literature from a previous study on fertilizers performed at the Stormwater Management Academy. The experimental findings of this study showed that there was a reduction in total nitrogen and total phosphorus on both A-2-4 soil and A-3 soil at the 0.25 in/hr intensity as a result of switching to the slow-release 16-0-8 (N-P-K) fertilizer. Results from the 0.1 in/hr rainfall intensity, which were available only for the A-2-4 soil, showed that at this intensity there was no apparent benefit to the switch in fertilizers. Furthermore, it was found that less total nitrogen and total phosphorus was lost from A-3 soil than A-2-4 soil at 0.25 in/hr when using 10-10-10 (N-P-K). At 0.1 in/hr, there was no apparent difference in total nitrogen lost. However, less total phosphorus was lost at this intensity. The results of this study showed that there is an environmental benefit to applying slow-release fertilizers. This was more significant for the 0.25 in/hr intensity than the 0.1 in/hr intensity at which no apparent benefit was found. In addition, it was found that runoff was a greater source of nutrient loss than baseflow, although baseflow losses were substantial. Furthermore, it was found that total nitrogen tends to be lost via both pathways of runoff and baseflow while phosphorus has a lower tendency to leach through the soil but readily runs off the soil surface. It was also observed that because fresh sod tends to be heavily fertilized, applications of fertilizer could be reduced or avoided entirely after sod placement and applied as needed.
|
554 |
Assessment of nutrient sources at watershed scale in agro-ecosystem of MississippiRisal, Avay 25 November 2020 (has links)
Excessive nutrient concentrations from a different point and non-point sources are the main cause of water impairment in the United States. Appropriate management practices, according to the source and quantity of pollutions, need to be implemented to control excessive nutrient influx in the water body. Various types of hydrological and water quality models with diverse function, capability and degree of complexity are employed to quantify watershed hydrologic processes and nutrient pollution. Multiple models can be applied to a watershed but the suitable model must be selected based on watershed type and simulation need. Two watershed-scale models, Soil and Water Assessment Tool (SWAT) and Hydrologic Simulation Program-Fortran (HSPF) were chosen for this study to simulate runoff, sediment yield, and nutrient load from the Big Sunflower River Watershed (BSRW) of Mississippi. The objectives of this study are to access the nutrient sources within the watershed, determine the appropriate model to quantify them, develop and evaluate model considering spatial and temporal variations in input data, and evaluate the effectiveness of different Best Management Practices (BMPs) on surface runoff, sediment yield and nutrient load at watershed scale. This study has identified a potential source of nutrients in BSRW and provided a suitable BMP for its management. Similarly, the study found both SWAT and HSPF were efficient in the simulation of streamflow, sediment yield and nutrient load, where SWAT was more efficient during simulation streamflow and sediment yield. Likewise, the study established that both water-quantity and water-quality are sensitive to the change in LULC data layers and thus, seasonal LULC data applied to SWAT will better explain variation in hydrology and water quality as compared to the annual cropland data layer. Moreover, the study showed that well managed vegetative filter strip was very efficient in reducing sediment yield, TN, and TP at both field and watershed scale among different BMPs evaluated at field and watershed scale. This study will be beneficial in developing efficient nutrient management strategy at field and watershed scale, selecting appropriate model and input according to the need and type of watershed, and providing further research opportunities to the scientific community.
|
555 |
<b>Representation of whole-plant nutrient status with select individual leaves at multiple growth stages in maize</b><b> </b>Brendan Jason Hanson (17112559) 10 December 2023 (has links)
<p dir="ltr">Routine testing of nutrient concentrations via plant tissue is an important component of in-season fertilizer management in maize (<i>Zea</i> <i>mays </i>L.) cropping systems. Accuracy of results are critical for nitrogen (N), phosphorous (P), potassium (K), and sulfur (S) management, yet there is little scientific guidance on which leaf to sample during mid- to late-vegetative growth stages. Additionally, the whole-plant status of each macro-nutrient may be best represented by a different leaf position due to mobility differences among nutrients. Mobility of each nutrient and allocation within the plant may also be influenced by environmental factors, management strategies, and genotype selection. Field experiments were conducted in West Lafayette and Windfall, Indiana in 2021 and 2022. The objectives were to (1) evaluate N, P, K, and S concentrations of specific leaf positions and whole plants in response to N fertilizer rate (NR), planting density (PD), and genotype (G) treatments at multiple growth stages, and (2) determine the ability of various leaf positions to predict whole-plant concentrations of N, P, K, and S across multiple NR, PD, and G environments. The West Lafayette study compared three NR treatments applied as urea-ammonium nitrate (UAN, 28-0-0) at the V5 growth stage and included (1) Control, no N applied, (2) 151 kg N ha<sup>-1</sup>, and (3) 241 kg N ha<sup>-1</sup>. The Windfall study compared two side-dress UAN rates of (1) Control, no N applied, and (2) 224 kg N ha<sup>-1</sup> at two planting densities (sub-plot) of 49,400 plants ha<sup>-1 </sup>and 89,000 plants ha<sup>-1</sup> with 4 Pioneer<sup>®</sup> genotypes (sub-sub-plot) including two historical double-cross hybrids and two modern single-crosses. Tissue sampling included the top-collared leaf and whole-plant at V8, the 8<sup>th</sup> leaf, top-collared leaf, and whole-plant at V12, and the 8<sup>th</sup> leaf, 12<sup>th</sup> leaf, ear-leaf, top-collared leaf and whole-plant at R1. Tissue N concentrations were consistently responsive to NR and PD treatments at all stages, but bottom leaves better reflected NR changes. As a mobile nutrient, N concentrations were highest in the uppermost leaf positions by R1 (ear-leaf and top-leaf), yet regressions between individual leaf and whole-plant N% were highest in the lower leaf positions (8<sup>th</sup> and 12<sup>th</sup> leaf positions). This suggested that the more likely a specific leaf was to exhibit nutrient deficiency symptoms, the better it would be at predicting whole-plant concentrations of that nutrient. Regressions between individual-leaf and whole-plant N% (modern genotypes only) increased from V8 to R1 and regressions were best with the 12<sup>th</sup> leaf position at both V12 and R1. Tissue S concentration responses to NR increased at later growth stages, and top-leaf S was a stronger reflection of whole-plant S than the 8<sup>th</sup> leaf. Despite S concentration differences among leaf positions at R1, the strength of regressions between each leaf position and whole-plant S were similar. There was no optimal leaf position to represent whole-plant S. While leaf N and S concentrations were above whole-plant concentrations, leaf P and K concentrations exhibited the opposite dynamic. There was little leaf P response to experimental treatment factors, and although regressions for leaf P versus whole-plant P concentrations were far weaker than for N, S or K, the 8<sup>th</sup> leaf position was preferred at V12 and R1 (R<sup>2</sup> of just 0.27 and 0.36, respectively). Potassium concentration response to NR was weak. However, leaf K% and whole-plant K% were highly related via regression, irrespective of NR, at all three stages. Prediction of whole-plant K was strongest with the 8<sup>th</sup> leaf at V12 and the 12<sup>th</sup> leaf at R1. In summary, optimum leaf sampling position was shown to vary with individual macronutrients and growth stages in maize. Although more research is essential, these preliminary results indicate that traditional sampling methods involving selection of the top fully-expanded leaf from V8 to silking, and the ear-leaf during post-silking stages, may not be the most reliable indicators of whole-plant nutrient status.</p>
|
556 |
Clay as a Control Technique for Karenia brevis: Water Chemistry Dynamics and Physiological Impacts on Benthic InvertebratesDevillier, Victoria 01 January 2023 (has links) (PDF)
Clay-based compounds are globally the most advanced and widely used method of direct suppression of marine harmful algal blooms, and are currently undergoing investigation as an option to control Karenia brevis blooms in Florida. Before clay may be accepted for widespread use, there are multiple concerns and challenges that must be addressed regarding the environmental safety of this method, such as effects on water quality, the fate of toxins, and potential impacts of clay treatment to non-target organisms. To contribute to ongoing assessments of clay as a potential control method for K. brevis blooms, we conducted experiments with a formulation of kaolinite clay modified with polyaluminum chloride known as Modified Clay II (MC II). In these experiments, we evaluated water chemistry dynamics and physiological responses in several bottom-dwelling marine species with ecological and economic significance, including blue crab (Callinectes sapidus), sea urchin (Lytechinus variegatus), and hard clam (Mercenaria campechiensis). First, we conducted an experiment with blue crabs in 20 L aquarium tanks (N = 48), exposing the animals to cultured K. brevis (1 x 106 cells L-1) and MC II (0.5 g L-1) and measuring mortality and reflexes over 192 hours. In our second experiment, K. brevis (1x106 cells L-1) and MC II (0.2 g L-1) were applied to 1,400 L mesocosms (N = 9) containing blue crabs, sea urchins, and hard clams, which were observed over 96 hours. In our final experiment, we modified the methods of the previous experiment to again examine K. brevis (1x106 cells L-1) and MC II (0.2 g L-1) with the same model species in 1,400 L mesocosms (N = 12) over 72 hours. In these two mesocosm experiments, we observed cell and toxin removal, changes in water quality characteristics including nutrients and carbonate chemistry, and measured mortality, respiration rate, reflexes, and internal toxin content. Our results were congruent across our three experiments. Treatment with MC II significantly reduced cell concentrations but did not reduce toxin concentrations in the water column. We found no notable impacts of clay treatment to reflexes, respiration rates, or internal toxin content for either of our three species. No significant differences in mortality were found for our three species, excluding crabs in the first mesocosm study, which were found to have pre-existing infections that confounded our results. Analyses of nutrients indicates MC II may remove dissolved phosphorus from the water column, and the potential to improve water quality which may make this formulation of clay desirable to managers. Overall, treatment with this formulation of clay did not appear to induce any significant measured effects on the model species within the observed time frames of these experiments. Clay appears to be a promising option to treat K. brevis blooms given its low cost, ease of application, and negligible impacts to the environment, and its use may relieve the damaging effects of K. brevis blooms by preventing mortalities that would otherwise occur were blooms allowed to persist. We therefore recommend that clays, including MC II, be considered for additional laboratory and field tests, with the goal of obtaining further information on potential ecological impacts so that managers and researchers can make informed decisions on the use of bloom control technologies in Florida waters.
|
557 |
Variation in Crown Morphology, Top Dieback Characteristics, and Growth and Yield Metrics for Two Varietal Ideotypes of Loblolly Pine at Age NineWest, Valerie Sawyer 03 May 2019 (has links)
The justification for development of elite loblolly pine (Pinus taeda L.) genotypes includes potential increases in stand uniformity and reduction in planting densities and corresponding establishment costs. However, some genotypes produce less desirable characteristics than others. The ability to realize full potential genetic gains is dependent on selecting appropriate combinations of genetic material and silvicultural management. In 2008, a study was established in the upper coastal plain of Mississippi to examine the performance of two varietal loblolly pine genotypes, a “crop tree” ideotype (CROP) and a “competitor” ideotype (COMP), at two levels of management intensity and three different initial tree spacings. After nine growing seasons, differences in crown morphology, top dieback frequency, and growth and yield variables are apparent between genetics and silvicultural intensity. The COMP ideotype had, on average, greater crown volume, less acute branch angles, and LAI than the CROP ideotype. Increasing management intensity had greater impact on crown characteristics than genotype. Current annual increment growth of stem wood was statistically higher in the COMP ideotype under intensive management and lowest stocking level. The interaction of ideotype, management intensity and spacing level significantly impacted growth and yield. The COMP ideotype is projected to produce greater volume than the CROP ideotype on this site. There was no significant difference between ideotypes with respect to specific gravity for any combination of cultural treatments. Instances of top dieback were significantly higher in the CROP ideotype across management and spacing levels. Nutrient sufficiency levels for fast growing loblolly pine and foliar levels in the current study were statistically significant. Differences due to management intensity were related to reduced competition and lower incidence of damage. The results of this study provide a reference point for elite loblolly pine under different silvicultural regimes for landowners interested in performance potential in Mississippi’s upper coastal plain.
|
558 |
Influences of Environmental Variability, Genetics and Plant Size on Variation in Sexual and Clonal Reproduction and Allocation of Resources in Three Wetland Plant SpeciesNicholls, Ann M. 18 May 2011 (has links)
No description available.
|
559 |
THE EFFECTS OF LIGHT AND NUTRIENTS ON FOOD CHAIN EFFICIENCY IN THREE-LEVEL FOOD CHAINS WITH BLUEGILLHall, Mia Rachael 10 August 2012 (has links)
No description available.
|
560 |
Understanding the Mechanisms of Decay: Interactive Effects of Litter Chemistry, the Microbial Community, and Nitrogen AvailabilityRinkes, Zachary L. 10 September 2014 (has links)
No description available.
|
Page generated in 0.0921 seconds