Spelling suggestions: "subject:"övervakad"" "subject:"övervakade""
1 |
Genomförbarhet av oövervakad konditionsträning vid depression : En pilotstudie / Feasibility trial of an unsupervised, exercise programme for depressionGylevik, Mårten January 2020 (has links)
Inledning: Trots att det finns starka belägg för att fysisk aktivitet är en effektiv behandling vid depression, ordinerar medicinsk personal sällan fysisk aktivitet som en del av behandlingen. Ett lättillgängligt sätt att behandla personer som lider av lätt till måttlig depression med fysisk aktivitet är därmed önskvärt. Syfte: Att undersöka genomförbarheten av ett oövervakat konditionsträningsprogram i kombination med en webbföreläsning som tilläggsbehandling vid mild till måttlig depression samt att beräkna stickprovsstorleken till en framtida slutgiltig studie. Metod: Totalt rekryterades 20 personer till denna randomiserad kontrollerad pilotstudie. Interventionen bestod av sedvanlig behandling samt åtta veckor oövervakad konditionsträning i kombination med en webbföreläsning om fysisk aktivitet vid depression. Kontrollgruppen fick enbart sedvanlig behandling. Utfallsmåtten var; genomförbarhet, depressiva symtom skattat med MADRS-S och fysisk aktivitetsnivå. Resultat: Bortfallet var 18 % i interventionsgruppen. Medianen av andelen genomförda träningspass var 79 % (interkvartilavstånd (IQR) 54– 85), andelen procent som uppnådde rekommenderad ansträngningsgrad var 100% (IQR 86-100), samt duration 100 % (IQR 92,5-100). Ingen signifikant skillnad noterades mellan grupperna i MADRS-S (p = 0.504, effektstorlek 0.48). Antalet aktivitetsminuter ökade signifikant i interventionsgruppen (p=0.006, effektstorlek = 1.67). Baserat på en klinisk relevant skillnad på 8 poäng för MADRS-S, krävs totalt 16 personer (8 personer per grupp) för att upptäcka en skillnad på 8 poäng med en SD på 4.7 med 80% power, alpha 0.05 och ett tvåsidigt test samt beräknat på en drop-out på 20%. Konklusion: Fysisk aktivitet i form av oövervakad konditionsträning i kombination med en webbföreläsning är en genomförbar tilläggsbehandling vid depression.
|
2 |
Förändringsanalys för detektering av stormfälld skog i satellitbilder från Sentinel 2Gustafsson, Nora, Klasson, Andreas January 2020 (has links)
En av Sveriges största industrier är skogsindustrin. Att sköta stora skogsinnehav medför vissa svårigheter, t.ex. så kan i händelse av en storm kan delar av skogen bli vindfälld. Det är då viktigt att upptäcka och ta bort de fallna träden eftersom det annars kan leda till granbarkborrangrepp. En metod för att upptäcka den vindfällda skogen är att ta flygbilder över området, vilket kan bli både dyrt och tidsödande. Därför testas i denna studie detektering av stormfälld skog i Sentinel 2 bilder. Sentinel 2 har valts ut eftersom den har både en hög spatial- och temporal upplösning samt att bilderna är tillgängliga gratis. Tidigare studier på området har använt satellitbilder med en lägre spatial upplösning eller data från andra typer av fjärranalys. De flesta av dessa metoder är ganska komplexa eller väldigt specifika för ett särskilt fall. Metoden som tas fram i denna studie ska vara enkel att implementera även för personer utan någon djupare kunskap inom fjärranalys. Bilddifferens med olika index såsom NDVI, NDMI och GreenNDVI testas. Även oövervakad klassificering testas. Noggrannheten har utvärderats med två-stegs metoden med en noggrannhet på 85 % men även en konfusionsmatris tillämpas för att utvärdera noggrannheten av områden där ingen förändring inträffat. Bilddifferens med NDVI och GreenNDVI klarar två-stegs testet när ett statistiskt bestämt tröskelvärde används, NDVI får högst användarnoggrannhet. Felmatrisen visar dock att det finns många stormfällen i ytorna som blivit klassade som ingen förändring, den oövervakade klassificeringen får inte det problemet i samma utsträckning. Bilddifferens i NDVI med statistiskt bestämt tröskelvärde bedöms vara den mest effektiva metoden för att detektera stormfälld skog.
|
3 |
Unsupervised Image Enhancement Using Generative Adversarial Networks : An attempt at real-time video enhancementGustafsson, Fredrik January 2021 (has links)
As the world has become more connected meetings have moved online. However, since few have access to studio lighting and uses the embedded webcam the video quality can be far from good. Hence, there is an interest in using a software solution to enhance the video quality in real time. This thesis investigates the feasibility to train a machine learning model to automatically enhance the quality of images. The model must learn without using paired images, since it is difficult to capture images with the exact same content but different quality. Furthermore, the model has to process at least 30 images per second which is a common frequency for videos. Therefore, this thesis investigates the possibility to train a model without paired images and whether such a model can be used in real-time. To answer these questions several sizes of the same model was trained. These were evaluated using six different measures during in order to determine if training without paired data is possible. The models image enhancement capabilities and inference speed were investigated followed by attempts at improving the speed. Finally, different combinations of datasets were investigated to test how well the model generalised to new data. The results show that it is possible to train models for image enhancement without paired data. However, to use such a model in real time a graphics card is needed to reach above 30 images per second.
|
4 |
Fraud Detection on Unlabeled Data with Unsupervised Machine Learning / Bedrägeridetektering på omärkt data med oövervakad maskininlärningRenström, Martin, Holmsten, Timothy January 2018 (has links)
A common problem in systems handling user interaction was the risk for fraudulent behaviour. As an example, in a system with credit card transactions it could have been a person using a another user's account for purchases, or in a system with advertisment it could be bots clicking on ads. These malicious attacks were often disguised as normal interactions and could be difficult to detect. It was especially challenging when working with datasets that did not contain so called labels, which showed if the data point was fraudulent or not. This meant that there were no data that had previously been classified as fraud, which in turn made it difficult to develop an algorithm that could distinguish between normal and fraudulent behavior. In this thesis, the area of anomaly detection was explored with the intent of detecting fraudulent behavior without labeled data. Three neural network based prototypes were developed in this study. All three prototypes were some sort of variation of autoencoders. The first prototype which served as a baseline was a simple three layer autoencoder, the second prototype was a novel autoencoder which was called stacked autoencoder, the third prototype was a variational autoencoder. The prototypes were then trained and evaluated on two different datasets which both contained non fraudulent and fraudulent data. In this study it was found that the proposed stacked autoencoder architecture achieved better performance scores in recall, accuracy and NPV in the tests that were designed to simulate a real world scenario. / Ett vanligt problem med användares interaktioner i ett system var risken för bedrägeri. För ett system som hanterarade dataset med kreditkortstransaktioner så kunde ett exempel vara att en person använde en annans identitet för kortköp, eller i system som hanterade reklam så skulle det kunna ha varit en automatiserad mjukvara som simulerade interaktioner. Dessa attacker var ofta maskerade som normala interaktioner och kunde därmed vara svåra att upptäcka. Inom dataset som inte har korrekt märkt data så skulle det vara speciellt svårt att utveckla en algoritm som kan skilja på om interaktionen var avvikande eller inte. I denna avhandling så utforskas ämnet att upptäcka anomalier i dataset utan specifik data som tyder på att det var bedrägeri. Tre prototyper av neurala nätverk användes i denna studie som tränades och utvärderades på två dataset som innehöll både data som sade att det var bedrägeri och inte bedrägeri. Den första prototypen som fungerade som en bas var en simpel autoencoder med tre lager, den andra prototypen var en ny autoencoder som har fått namnet staplad autoencoder och den tredje prototypen var en variationell autoencoder. För denna studie så gav den föreslagna staplade autoencodern bäst resultat för återkallelse, noggrannhet och NPV i de test som var designade att efterlikna ett verkligt scenario.
|
5 |
Readability: Man and Machine : Using readability metrics to predict results from unsupervised sentiment analysis / Läsbarhet: Människa och maskin : Användning av läsbarhetsmått för att förutsäga resultaten från oövervakad sentimentanalysLarsson, Martin, Ljungberg, Samuel January 2021 (has links)
Readability metrics assess the ease with which human beings read and understand written texts. With the advent of machine learning techniques that allow computers to also analyse text, this provides an interesting opportunity to investigate whether readability metrics can be used to inform on the ease with which machines understand texts. To that end, the specific machine analysed in this paper uses word embeddings to conduct unsupervised sentiment analysis. This specification minimises the need for labelling and human intervention, thus relying heavily on the machine instead of the human. Across two different datasets, sentiment predictions are made using Google’s Word2Vec word embedding algorithm, and are evaluated to produce a dichotomous output variable per sentiment. This variable, representing whether a prediction is correct or not, is then used as the dependent variable in a logistic regression with 17 readability metrics as independent variables. The resulting model has high explanatory power and the effects of readability metrics on the results from the sentiment analysis are mostly statistically significant. However, metrics affect sentiment classification in the two datasets differently, indicating that the metrics are expressions of linguistic behaviour unique to the datasets. The implication of the findings is that readability metrics could be used directly in sentiment classification models to improve modelling accuracy. Moreover, the results also indicate that machines are able to pick up on information that human beings do not pick up on, for instance that certain words are associated with more positive or negative sentiments. / Läsbarhetsmått bedömer hur lätt eller svårt det är för människor att läsa och förstå skrivna texter. Eftersom nya maskininlärningstekniker har utvecklats kan datorer numera också analysera texter. Därför är en intressant infallsvinkel huruvida läsbarhetsmåtten också kan användas för att bedöma hur lätt eller svårt det är för maskiner att förstå texter. Mot denna bakgrund använder den specifika maskinen i denna uppsats ordinbäddningar i syfte att utföra oövervakad sentimentanalys. Således minimeras behovet av etikettering och mänsklig handpåläggning, vilket resulterar i en mer djupgående analys av maskinen istället för människan. I två olika dataset jämförs rätt svar mot sentimentförutsägelser från Googles ordinbäddnings-algoritm Word2Vec för att producera en binär utdatavariabel per sentiment. Denna variabel, som representerar om en förutsägelse är korrekt eller inte, används sedan som beroende variabel i en logistisk regression med 17 olika läsbarhetsmått som oberoende variabler. Den resulterande modellen har högt förklaringsvärde och effekterna av läsbarhetsmåtten på resultaten från sentimentanalysen är mestadels statistiskt signifikanta. Emellertid är effekten på klassificeringen beroende på dataset, vilket indikerar att läsbarhetsmåtten ger uttryck för olika lingvistiska beteenden som är unika till datamängderna. Implikationen av resultaten är att läsbarhetsmåtten kan användas direkt i modeller som utför sentimentanalys för att förbättra deras prediktionsförmåga. Dessutom indikerar resultaten också att maskiner kan plocka upp på information som människor inte kan, exempelvis att vissa ord är associerade med positiva eller negativa sentiment.
|
6 |
Analyzing Music Improvisations Using Unsupervised Machine Learning : Towards Automatically Discovering Creative Cognition Principles / Analysera musikaliska improvisationer utan tillsyn Maskininlärning : Mot automatisk upptäckt av principer för kreativ kognitionJorda i Custal, Cristina January 2024 (has links)
In the field of musical expression, the complex relationship between improvisation and the cognitive processes that underlie creativity presents a fascinating yet challenging puzzle, prompting this thesis to explore the connection between musical improvisation and creative cognition among musicians. Focusing on the development of robust methods for feature extraction and representation, it utilizes unsupervised Machine Learning (ML) techniques to project improvisations from a prime melody into a high-level latent space. The methodology involves iterative analysis employing Variational Autoencoder (VAE) models, initially pre-trained with a larger dataset and fine-tuned with a musical improvisation dataset provided by the Max Plank Institute. Evaluation encompasses Evidence Lower Bound (ELBO) loss metric and dimensionality reduction techniques like Principal Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE), Multidimensional Scaling (MDS), and Uniform Manifold Approximation and Projection (UMAP) to explore latent space representations. The results reveal that experienced musicians exhibit a greater divergence from the prime melody compared to amateurs. Moreover, professionals’ samples demonstrate more refined clustering and nuanced adjustments between improvisations projected in the latent space. / Inom musikaliska uttryck är det komplexa förhållandet mellan improvisation och de kognitiva processer som ligger till grund för kreativitet ett fascinerande men utmanande pussel, vilket föranleder denna avhandling att utforska sambandet mellan musikalisk improvisation och kreativ kognition bland musiker. Avhandlingen fokuserar på utvecklingen av robusta metoder för extraktion och representation av funktioner och använder oövervakade maskininlärningstekniker (ML) för att projicera improvisationer från en huvudmelodi till ett latent utrymme på hög nivå. Metoden innebär iterativ analys med hjälp av VAE-modeller (Variational Autoencoder), som ursprungligen förutbildades med ett större dataset och finjusterades med ett dataset för musikalisk improvisation från Max Plank Institute. Utvärderingen omfattar förlustmåttet Evidence Lower Bound (ELBO) och dimensionalitetsreducerande tekniker som Principal Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE), Multidimensional Scaling (MDS) och Uniform Manifold Approximation and Projection (UMAP) för att utforska latenta rymdrepresentationer. Resultaten visar att erfarna musiker uppvisar en större avvikelse från huvudmelodin jämfört med amatörer. Dessutom visar professionella musiker mer raffinerade kluster och nyanserade justeringar mellan improvisationer som projiceras i den latenta rymden.
|
7 |
Real-time Unsupervised Domain Adaptation / Oövervakad domänanpassning i realtidBotet Colomer, Marc January 2023 (has links)
Machine learning systems have been demonstrated to be highly effective in various fields, such as in vision tasks for autonomous driving. However, the deployment of these systems poses a significant challenge in terms of ensuring their reliability and safety in diverse and dynamic environments. Online Unsupervised Domain Adaptation (UDA) aims to address the issue of continuous domain changes that may occur during deployment, such as sudden weather changes. Although these methods possess a remarkable ability to adapt to unseen domains, they are hindered by the high computational cost associated with constant adaptation, making them unsuitable for real-world applications that demand real-time performance. In this work, we focus on the challenging task of semantic segmentation. We present a framework for real-time domain adaptation that utilizes novel strategies to enable online adaptation at a rate of over 29 FPS on a single GPU. We propose a clever partial backpropagation in conjunction with a lightweight domain-shift detector that identifies the need for adaptation, adapting appropriately domain-specific hyperparameters to enhance performance. To validate our proposed framework, we conduct experiments in various storm scenarios using different rain intensities and evaluate our results in different domain shifts, such as fog visibility, and using the SHIFT dataset. Our results demonstrate that our framework achieves an optimal trade-off between accuracy and speed, surpassing state-of-the-art results, while the introduced strategies enable it to run more than six times faster at a minimal performance loss. / Maskininlärningssystem har visat sig vara mycket effektiva inom olika områden, till exempel i datorseende uppgifter för autonom körning. Spridning av dessa system utgör dock en betydande utmaning när det gäller att säkerställa deras tillförlitlighet och säkerhet i olika och dynamiska miljöer. Online Unsupervised Domain Adaptation (UDA) syftar till att behandla problemet med kontinuerliga domänändringar som kan inträffas under systemets användning, till exempel plötsliga väderförändringar. Även om dessa metoder har en anmärkningsvärd förmåga att anpassa sig till okända domäner, hindras de av den höga beräkningskostnaden som är förknippad med ständig nöndvändighet för anpassning, vilket gör dem olämpliga för verkliga tillämpningar som kräver realtidsprestanda. I detta avhandling fokuserar vi på utmanande uppgiften semantisk segmentering. Vi presenterar ett system för domänanpassning i realtid som använder nya strategier för att möjliggöra onlineanpassning med en hastighet av över 29 FPS på en enda GPU. Vi föreslår en smart partiell backpropagation i kombination med en lätt domänförskjutningsdetektor som identifierar nãr anpassning egentligen behövs, vilket kan konfigureras av domänspecifika hyperparametrar på lämpligt sätt för att förbättra prestandan. För att validera vårt föreslagna system genomför vi experiment i olika stormscenarier med olika regnintensiteter och utvärderar våra resultat i olika domänförskjutningar, såsom dimmasynlighet, och med hjälp av SHIFT-datauppsättningen. Våra resultat visar att vårt system uppnår en optimal avvägning mellan noggrannhet och hastighet, och överträffar toppmoderna resultat, medan de introducerade strategierna gör det möjligt att köra mer än sex gånger snabbare med minimal prestandaförlust.
|
8 |
Understanding people movement and detecting anomalies using probabilistic generative models / Att förstå personförflyttningar och upptäcka anomalier genom att använda probabilistiska generativa modellerHansson, Agnes January 2020 (has links)
As intelligent access solutions begin to dominate the world, the statistical learning methods to answer for the behavior of these needs attention, as there is no clear answer to how an algorithm could learn and predict exactly how people move. This project aims at investigating if, with the help of unsupervised learning methods, it is possible to distinguish anomalies from normal events in an access system, and if the most probable choice of cylinder to be unlocked by a user can be calculated.Given to do this is a data set of the previous events in an access system, together with the access configurations - and the algorithms that were used consisted of an auto-encoder and a probabilistic generative model.The auto-encoder managed to, with success, encode the high-dimensional data set into one of significantly lower dimension, and the probabilistic generative model, which was chosen to be a Gaussian mixture model, identified clusters in the data and assigned a measure of unexpectedness to the events.Lastly, the probabilistic generative model was used to compute the conditional probability of which the user, given all the details except which cylinder that was chosen during an event, would choose a certain cylinder. The result of this was a correct guess in 65.7 % of the cases, which can be seen as a satisfactory number for something originating from an unsupervised problem. / Allt eftersom att intelligenta åtkomstlösningar tar över i samhället, så är det nödvändigt att ägna de statistiska inlärnings-metoderna bakom dessa tillräckligt med uppmärksamhet, eftersom det inte finns något självklart svar på hur en algoritm ska kunna lära sig och förutspå människors exakta rörelsemönster.Det här projektet har som mål att, med hjälp av oövervakad inlärning, undersöka huruvida det är möjligt att urskilja anomalier från normala iakttagelser, och om den låscylinder med högst sannolikhet att en användare väljer att försöka låsa upp går att beräknda.Givet för att genomföra detta projekt är en datamängd där händelser från ett åtkomstsystem finns, tillsammans med tillhörande åtkomstkonfig-urationer. Algoritmerna som användes i projektet har bestått av en auto-encoder och en probabilistisk generativ modell.Auto-encodern lyckades, med tillfredsställande resultat, att koda det hög-dimensionella datat till ett annat med betydligt lägre dimension, och den probabilistiska generativa modellen, som valdes till en Gaussisk mixtur-modell, lyckades identifiera kluster i datat och med att tilldela varje observation ett mått på dess otrolighet.Till slut så användes den probabilistiska generativa modellen för att beräkna en villkorad sannolikhet, för vilken användaren, given alla attribut för en händelse utom just vilken låscylinder som denna försökte öppna, skulle välja.Resultatet av dessa var en korrekt gissning i 65,7 % av fallen, vilket kan ses som en tillfredställande siffra för något som härrör från ett oövervakat problem.
|
9 |
Unsupervised Machine Learning Based Anomaly Detection in Stockholm Road Traffic / Oövervakad Maskininlärning baserad Anomali Detektion i Stockholms TrafikdataHellström, Vilma January 2023 (has links)
This thesis is a study of anomaly detection in vehicle traffic data in central Stockholm. Anomaly detection is an important tool in the analysis of traffic data for improved urban planing. Two unsupervised machine learning models are used, the DBSCAN clustering model and the LSTM deep learning neural network. A modified version of the models is also employed, incorporating adaptations that exploit diurnal traffic variations to improve the quality of the results. Subsequently, the model performance is analysed and compared. For evaluating the models, we employed two types of synthetic anomalies: a straightforward one and a more complex variant. The results indicate that all models show some ability to detect both anomalies. The models show better performance on the simpler anomaly, with both LSTM and DBSCAN giving comparable results. In contrast, LSTM outperforms DBSCAN on the more complex anomaly. Notably, the modified versions of both models consistently show enhanced performance. This suggest that LSTM outperforms DBSCAN as anomalies become more complex, presumably owing to LSTM’s proficiency in identifying intricate patterns. However, this relationship warrants further investigation in future research. / Denna examensuppsats behandlar anomalidetektering i fordonstrafikdata i centrala Stockholm. Anomalidetektering är ett viktigt verktyg vid analys av trafikdata för förbättrad stadsplanering. Två oövervakade maskininlärningsmodeller används, klustringsmodellen DBSCAN och djupinlärande neurala nätverket LSTM. En modifierad version av modellerna appliceras även, denna modifikation innebär anpassningar som utnyttjar dagliga traffikvariationer för att förbättra kvaliteten på resultatet. Modellerna analyseras och dess prestanda jämförs. För att utvärdera modellerna användes två typer av syntetiska anomalier: en enkel och en mer komplex anomali. Resultaten visar på en förmåga hos modellerna att upptäcka båda anomalierna. Modellerna uppvisar en bättre prestanda på den enklare anomalin, där LSTM och DBSCAN ger jämförbara resultat. För den mer komplexa anomalin så ger LSTM bättre resultat än DBSCAN. De modifierade versionerna av båda modellerna genererade konsekvent bättre resultat än den mer konventionella tillämpningen. Resultatet tyder på att LSTM överträffar DBSCAN när anomalierna blir mer komplexa, detta på grund av LSTMs skicklighet i att identifiera icke triviala mönster. Detta kräver dock ytterligare undersökningar i framtida forskning.
|
10 |
Unsupervised multiple object tracking on video with no ego motion / Oövervakad spårning av flera objekt på video utan egorörelseWu, Shuai January 2022 (has links)
Multiple-object tracking is a task within the field of computer vision. As the name stated, the task consists of tracking multiple objects in the video, an algorithm that completes such task are called trackers. Many of the existing trackers require supervision, meaning that the location and identity of each object which appears in the training data must be labeled. The procedure of generating these labels, usually through manual annotation of video material, is highly resource-consuming. On the other hand, different from well-known labeled Multiple-object tracking datasets, there exist a massive amount of unlabeled video with different objects, environments, and video specifications. Using such unlabeled video can therefore contribute to cheaper and more diverse datasets. There have been numerous attempts on unsupervised object tracking, but most rely on evaluating the tracker performance on a labeled dataset. The reason behind this is the lack of an evaluation method for unlabeled datasets. This project explores unsupervised pedestrian tracking on video taken from a stationary camera over a long duration. On top of a simple baseline tracker, two methods are proposed to extend the baseline to increase its performance. We then propose an evaluation method that works for unlabeled video, which we use to evaluate the proposed methods. The evaluation method consists of the trajectory completion rate and the number of ID switches. The trajectory completion rate is a novel metric proposed for pedestrian tracking. Pedestrians generally enter and exit the scene for video taken by a stationary camera in specific locations. We define a complete trajectory as a trajectory that goes from one area to another. The completion rate is calculated by the number of complete trajectories over all trajectories. Results showed that the two proposed methods had increased the trajectory completion rate on top of the original baseline performance. Moreover, both proposed methods did so without significantly increasing the number of ID switches. / Spårning av flera objekt är en uppgift inom området datorseende. Som namnet angav består uppgiften av att spåra flera objekt i videon, en algoritm som slutför en sådan uppgift kallas trackers. Många av de befintliga spårarna kräver övervakning, vilket innebär att platsen och identiteten för varje objekt som visas i träningsdata måste märkas. Proceduren för att generera dessa etiketter, vanligtvis genom manuell anteckning av videomaterial, är mycket resurskrävande. Å andra sidan, till skillnad från välkända märkta uppsättningar för spårning av flera objekt, finns det en enorm mängd omärkt video med olika objekt, miljöer och videospecifikationer. Att använda sådan omärkt video kan därför bidra till billigare och mer varierande datauppsättningar. Det har gjorts många försök med oövervakad objektspårning, men de flesta förlitar sig på att utvärdera spårningsprestandan på en märkt dataset. Anledningen till detta är avsaknaden av en utvärderingsmetod för omärkta datamängder. Detta projekt utforskar oövervakad fotgängarspårning på video som tagits från en stillastående kamera under lång tid. Utöver en enkel baslinjespårare föreslås två metoder för att utöka baslinjen för att öka dess prestanda. Vi föreslår sedan en utvärderingsmetod som fungerar för omärkt video, som vi använder för att utvärdera de föreslagna metoderna. Utvärderingsmetoden består av banans slutförandegrad och antalet ID-växlar. Banans slutförandegrad är ett nytt mått som föreslås för spårning av fotgängare. Fotgängare går vanligtvis in och lämnar scenen för video tagna med en stillastående kamera på specifika platser. Vi definierar en komplett bana som en bana som går från ett område till ett annat. Färdigställandegraden beräknas av antalet kompletta banor över alla banor. Resultaten visade att de två föreslagna metoderna hade ökat graden av fullbordande av banan utöver den ursprungliga baslinjeprestandan. Dessutom gjorde båda de föreslagna metoderna det utan att nämnvärt öka antalet ID-växlar.
|
Page generated in 0.0479 seconds