• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 350
  • 42
  • 20
  • 13
  • 11
  • 9
  • 8
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 554
  • 554
  • 258
  • 215
  • 178
  • 138
  • 117
  • 114
  • 108
  • 96
  • 87
  • 84
  • 77
  • 75
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Vyhledávání objektů v obraze na základě předlohy / Image object detection using template

Novák, Pavel January 2014 (has links)
This Thesis is focused to Image Object Detection using Template. Main Benefit of this Work is a new Method for sympthoms extraction from Histogram of Oriented Gradients using set of Comparators. In this used Work Methods of Image comparing and Sympthoms extraction are described. Main Part is given to Histogram of Oriented Gradients Method. We came out from this Method. In this Work is used small training Data Set (100 pcs.) verified by X-Validation, followed by tests on real Sceneries. Achieved success Rate using X-Validation is 98%. for SVM Algorithm.
472

Mobilní app pro měření odstupu od předchozího vozidla v provozu / Mobile App for Measuring the Range from the Preceding Vehicle in Traffic

Henry, Andrii January 2015 (has links)
This master's thesis deals with development of mobile app for measuring the range from the preceding vehicle in traffic using visual-based methods. This paper describes implementation of computer vision algorithms of detection and tracing objects, detection of horizon on desktop and mobile devices. Also deals with visual-based range measuring without any other mechanisms. The output of the work is implemented detectors of vihicles and horizon using OpenCV library on the Windows platfom and draft of user inerface of a mobile phone aplication on the Android platform.
473

Detekce objektů pomocí Kinectu / Object Detection Using Kinect

Řehánek, Martin January 2012 (has links)
With the release of the Kinect device new possibilities appeared, allowing a simple use of image depth in image processing. The aim of this thesis is to propose a method for object detection and recognition in a depth map. Well known method Bag of Words and a descriptor based on Spin Image method are used for the object recognition. The Spin Image method is one of several existing approaches to depth map which are described in this thesis. Detection of object in picture is ensured by the sliding window technique. That is improved and speeded up by utilization of the depth information.
474

Klasifikace obrazů s pomocí hlubokého učení / Image classification using deep learning

Hřebíček, Zdeněk January 2016 (has links)
This thesis deals with image object detection and its classification into classes. Classification is provided by models of framework for deep learning BVLC/Caffe. Object detection is provided by AlpacaDB/selectivesearch and belltailjp/selective_search_py algorithms. One of results of this thesis is modification and usage of deep convolutional neural network AlexNet in BVLC/Caffe framework. This model was trained with precision 51,75% for classification into 1 000 classes. Then it was modified and trained for classification into 20 classes with precision 75.50%. Contribution of this thesis is implementation of graphical interface for object detction and their classification into classes, which is implemented as aplication based on web server in Python language. Aplication integrates object detection algorithms mentioned abowe with classification with help of BVLC/Caffe. Resulting aplication can be used for both object detection (and classification) and for fast verification of any classification model of BVLC/Caffe. This aplication was published on server GitHub under license Apache 2.0 so it can be further implemented and used.
475

Automatické strojové metody získávání znalostí z multimediálních dat / Automatic Machine Learning Methods for Multimedia Data Analysis

Mašek, Jan January 2016 (has links)
The quality and efficient processing of increasing amount of multimedia data is nowadays becoming increasingly needed to obtain some knowledge of this data. The thesis deals with a research, implementation, optimization and the experimental verification of automatic machine learning methods for multimedia data analysis. Created approach achieves higher accuracy in comparison with common methods, when applied on selected examples. Selected results were published in journals with impact factor [1, 2]. For these reasons special parallel computing methods were created in this work. These methods use massively parallel hardware to save electric energy and computing time and for achieving better result while solving problems. Computations which usually take days can be computed in minutes using new optimized methods. The functionality of created methods was verified on selected problems: artery detection from ultrasound images with further classifying of artery disease, the buildings detection from aerial images for obtaining geographical coordinates, the detection of materials contained in meteorite from CT images, the processing of huge databases of structured data, the classification of metallurgical materials with using laser induced breakdown spectroscopy and the automatic classification of emotions from texts.
476

Monitorování dopravy z leteckých videí / Traffic Monitoring from Aerial Video Data

Babinec, Adam January 2015 (has links)
This thesis proposes a system for extraction of vehicle trajectories from aerial video data for traffic analysis. The system is designed to analyse video sequence of a single traffic scene captured by an action camera mounted on an arbitrary UAV flying at the altitudes of approximately 150 m. Each video frame is geo-registered using visual correspondence of extracted ORB features. For the detection of vehicles, MB-LBP classifier cascade is deployed, with additional step of pre-filtering of detection candidates based on movement and scene context. Multi-object tracking is achieved by Bayesian bootstrap filter with an aid of the detection algorithm. The performance of the system was evaluated on three extensively annotated datasets. The results show that on the average, 92% of all extracted trajectories are corresponding to the reality. The system is already being used in the research to aid the process of design and analysis of road infrastructures.
477

You Only Gesture Once (YouGo): American Sign Language Translation using YOLOv3

Mehul Nanda (8786558) 01 May 2020 (has links)
<div>The study focused on creating and proposing a model that could accurately and precisely predict the occurrence of an American Sign Language gesture for an alphabet in the English Language</div><div>using the You Only Look Once (YOLOv3) Algorithm. The training dataset used for this study was custom created and was further divided into clusters based on the uniqueness of the ASL sign.</div><div>Three diverse clusters were created. Each cluster was trained with the network known as darknet. Testing was conducted using images and videos for fully trained models of each cluster and</div><div>Average Precision for each alphabet in each cluster and Mean Average Precision for each cluster was noted. In addition, a Word Builder script was created. This script combined the trained models, of all 3 clusters, to create a comprehensive system that would create words when the trained models were supplied</div><div>with images of alphabets in the English language as depicted in ASL.</div>
478

Rozpoznávání ručně psaného notopisu / Optical Recognition of Handwritten Music Notation

Hajič, Jan January 2019 (has links)
Optical Music Recognition (OMR) is the field of computationally reading music notation. This thesis presents, in the form of dissertation by publication, contributions to the theory, resources, and methods of OMR especially for handwritten notation. The main contributions are (1) the Music Notation Graph (MuNG) formalism for describing arbitrarily complex music notation using an oriented graph that can be unambiguously interpreted in terms of musical semantics, (2) the MUSCIMA++ dataset of musical manuscripts with MuNG as ground truth that can be used to train and evaluate OMR systems and subsystems from the image all the way to extracting the musical semantics encoded therein, and (3) a pipeline for performing OMR on musical manuscripts that relies on machine learning both for notation symbol detection and the notation assembly stage, and on properties of the inferred MuNG representation to deterministically extract the musical semantics. While the the OMR pipeline does not perform flawlessly, this is the first OMR system to perform at basic useful tasks over musical semantics extracted from handwritten music notation of arbitrary complexity.
479

Forest Growth And Volume Estimation Using Machine Learning

Dahmén, Gustav, Strand, Erica January 2022 (has links)
Estimation of forest parameters using remote sensing information could streamline the forest industry from a time and economic perspective. This thesis utilizes object detection and semantic segmentation to detect and classify individual trees from images over 3D models reconstructed from satellite images. This thesis investigated two methods that showed different strengths in detecting and classifying trees in deciduous, evergreen, or mixed forests. These methods are not just valuable for forest inventory but can be greatly useful for telecommunication companies and in defense and intelligence applications. This thesis also presents methods for estimating tree volume and estimating tree growth in 3D models. The results from the methods show the potential to be used in forest management. Finally, this thesis shows several benefits of managing a digitalized forest, economically, environmentally, and socially.
480

Object Detection with Deep Convolutional Neural Networks in Images with Various Lighting Conditions and Limited Resolution / Detektion av objekt med Convolutional Neural Networks (CNN) i bilder med dåliga belysningförhållanden och lågupplösning

Landin, Roman January 2021 (has links)
Computer vision is a key component of any autonomous system. Real world computer vision applications rely on a proper and accurate detection and classification of objects. A detection algorithm that doesn’t guarantee reasonable detection accuracy is not applicable in real time scenarios where safety is the main objective. Factors that impact detection accuracy are illumination conditions and image resolution. Both contribute to degradation of objects and lead to low classifications and detection accuracy. Recent development of Convolutional Neural Networks (CNNs) based algorithms offers possibilities for low-light (LL) image enhancement and super resolution (SR) image generation which makes it possible to combine such models in order to improve image quality and increase detection accuracy. This thesis evaluates different CNNs models for SR generation and LL enhancement by comparing generated images against ground truth images. To quantify the impact of the respective model on detection accuracy, a detection procedure was evaluated on generated images. Experimental results evaluated on images selected from NoghtOwls and Caltech Pedestrian datasets proved that super resolution image generation and low-light image enhancement improve detection accuracy by a substantial margin. Additionally, it has been proven that a cascade of SR generation and LL enhancement further boosts detection accuracy. However, the main drawback of such cascades is related to an increased computational time which limits possibilities for a range of real time applications. / Datorseende är en nyckelkomponent i alla autonoma system. Applikationer för datorseende i realtid är beroende av en korrekt detektering och klassificering av objekt. En detekteringsalgoritm som inte kan garantera rimlig noggrannhet är inte tillämpningsbar i realtidsscenarier, där huvudmålet är säkerhet. Faktorer som påverkar detekteringsnoggrannheten är belysningförhållanden och bildupplösning. Dessa bidrar till degradering av objekt och leder till låg klassificerings- och detekteringsnoggrannhet. Senaste utvecklingar av Convolutional Neural Networks (CNNs) -baserade algoritmer erbjuder möjligheter för förbättring av bilder med dålig belysning och bildgenerering med superupplösning vilket gör det möjligt att kombinera sådana modeller för att förbättra bildkvaliteten och öka detekteringsnoggrannheten. I denna uppsats utvärderas olika CNN-modeller för superupplösning och förbättring av bilder med dålig belysning genom att jämföra genererade bilder med det faktiska data. För att kvantifiera inverkan av respektive modell på detektionsnoggrannhet utvärderades en detekteringsprocedur på genererade bilder. Experimentella resultat utvärderades på bilder utvalda från NoghtOwls och Caltech datauppsättningar för fotgängare och visade att bildgenerering med superupplösning och bildförbättring i svagt ljus förbättrar noggrannheten med en betydande marginal. Dessutom har det bevisats att en kaskad av superupplösning-generering och förbättring av bilder med dålig belysning ytterligare ökar noggrannheten. Den största nackdelen med sådana kaskader är relaterad till en ökad beräkningstid som begränsar möjligheterna för en rad realtidsapplikationer.

Page generated in 0.0714 seconds