361 |
Generation and Optimization of Local Shape Descriptors for Point Matching in 3-D SurfacesTaati, BABAK 01 September 2009 (has links)
We formulate Local Shape Descriptor selection for model-based object recognition in range data as an optimization problem and offer a platform that facilitates a solution. The goal of object recognition is to identify and localize objects of interest in an image. Recognition is often performed in three phases: point matching, where correspondences are established between points on the 3-D surfaces of the models and the range image; hypothesis generation, where rough alignments are found between the image and the visible models; and pose refinement, where the accuracy of the initial alignments is improved. The overall efficiency and reliability of a recognition system is highly influenced by the effectiveness of the point matching phase. Local Shape Descriptors are used for establishing point correspondences by way of encapsulating local shape, such that similarity between two descriptors indicates geometric similarity between their respective neighbourhoods.
We present a generalized platform for constructing local shape descriptors that subsumes a large class of existing methods and allows for tuning descriptors to the geometry of specific models and to sensor characteristics. Our descriptors, termed as Variable-Dimensional Local Shape Descriptors, are constructed as multivariate observations of several local properties and are represented as histograms. The optimal set of properties, which maximizes the performance of a recognition system, depend on the geometry of the objects of interest and the noise characteristics of range image acquisition devices and is selected through pre-processing the models and sample training images. Experimental analysis confirms the superiority of optimized descriptors over generic ones in recognition tasks in LIDAR and dense stereo range images. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2009-09-01 11:07:32.084
|
362 |
A plastic multilayer network of the early visual system inspired by the neocortical circuitTeichmann, Michael 25 October 2018 (has links)
The ability of the visual system for object recognition is remarkable. A better understanding of its processing would lead to better computer vision systems and could improve our understanding of the underlying principles which produce intelligence.
We propose a computational model of the visual areas V1 and V2, implementing a rich connectivity inspired by the neocortical circuit. We combined the three most important cortical plasticity mechanisms. 1) Hebbian synaptic plasticity to learn the synapse strengths of excitatory and inhibitory neurons, including trace learning to learn invariant representations. 2) Intrinsic plasticity to regulate the neurons responses and stabilize the learning in deeper layers. 3) Structural plasticity to modify the connections and to overcome the bias for the learnings from the initial definitions.
Among others, we show that our model neurons learn comparable receptive fields to cortical ones. We verify the invariant object recognition performance of the model. We further show that the developed weight strengths and connection probabilities are related to the response correlations of the neurons. We link the connection probabilities of the inhibitory connections to the underlying plasticity mechanisms and explain why inhibitory connections appear unspecific.
The proposed model is more detailed than previous approaches. It can reproduce neuroscientific findings and fulfills the purpose of the visual system, invariant object recognition. / Das visuelle System des Menschen hat die herausragende Fähigkeit zur invarianten Objekterkennung. Ein besseres Verständnis seiner Arbeitsweise kann zu besseren Computersystemen für das Bildverstehen führen und könnte darüber hinaus unser Verständnis von den zugrundeliegenden Prinzipien unserer Intelligenz verbessern.
Diese Arbeit stellt ein Modell der visuellen Areale V1 und V2 vor, welches eine komplexe, von den Strukturen des Neokortex inspirierte, Verbindungsstruktur integriert. Es kombiniert die drei wichtigsten kortikalen Plastizitäten: 1) Hebbsche synaptische Plastizität, um die Stärke der exzitatorischen und inhibitorischen Synapsen zu lernen, welches auch „trace“-Lernen, zum Lernen invarianter Repräsentationen, umfasst. 2) Intrinsische Plastizität, um das Antwortverhalten der Neuronen zu regulieren und damit das Lernen in tieferen Schichten zu stabilisieren. 3) Strukturelle Plastizität, um die Verbindungen zu modifizieren und damit den Einfluss anfänglicher Festlegungen auf das Lernergebnis zu reduzieren.
Neben weiteren Ergebnissen wird gezeigt, dass die Neuronen des Modells vergleichbare rezeptive Felder zu Neuronen des visuellen Kortex erlernen. Ebenso wird die Leistungsfähigkeit des Modells zur invariante Objekterkennung verifiziert. Des Weiteren wird der Zusammenhang von Gewichtsstärke und Verbindungswahrscheinlichkeit zur Korrelation der Aktivitäten der Neuronen aufgezeigt. Die gefundenen Verbindungswahrscheinlichkeiten der inhibitorischen Neuronen werden in Zusammenhang mit der Funktionsweise der inhibitorischen Plastizität gesetzt, womit erklärt wird warum inhibitorische Verbindungen unspezifisch erscheinen.
Das vorgestellte Modell ist detaillierter als vorangegangene Arbeiten. Es ermöglicht neurowissenschaftliche Erkenntnisse nachzuvollziehen, wobei es ebenso die Hauptleistung des visuellen Systems erbringt, invariante Objekterkennung. Darüber hinaus ermöglichen sein Detailgrad und seine Selbstorganisationsprinzipien weitere neurowissenschaftliche Erkenntnisse und die Modellierung komplexerer Modelle der Verarbeitung im Gehirn.
|
363 |
Vyhledání význačných bodů v rastrovém obraze / Searching for Points of Interest in Raster ImageKaněčka, Petr Unknown Date (has links)
This document deals with an image points of interest detection possibilities, especially corner detectors. Many applications which are interested in computer vision needs these points as their necessary step in the image processing. It describes the reasons why it is so useful to find these points and shows some basic methods to find them. There are compared features of these methods at the end.
|
364 |
Visual attention in primates and for machines - neuronal mechanismsBeuth, Frederik 09 December 2020 (has links)
Visual attention is an important cognitive concept for the daily life of humans, but still not fully understood. Due to this, it is also rarely utilized in computer vision systems. However, understanding visual attention is challenging as it has many and seemingly-different aspects, both at neuronal and behavioral level. Thus, it is very hard to give a uniform explanation of visual attention that can account for all aspects. To tackle this problem, this thesis has the goal to identify a common set of neuronal mechanisms, which underlie both neuronal and behavioral aspects. The mechanisms are simulated by neuro-computational models, thus, resulting in a single modeling approach to explain a wide range of phenomena at once. In the thesis, the chosen aspects are multiple neurophysiological effects, real-world object localization, and a visual masking paradigm (OSM). In each of the considered fields, the work also advances the current state-of-the-art to better understand this aspect of attention itself. The three chosen aspects highlight that the approach can account for crucial neurophysiological, functional, and behavioral properties, thus the mechanisms might constitute the general neuronal substrate of visual attention in the cortex. As outlook, our work provides for computer vision a deeper understanding and a concrete prototype of attention to incorporate this crucial aspect of human perception in future systems.:1. General introduction
2. The state-of-the-art in modeling visual attention
3. Microcircuit model of attention
4. Object localization with a model of visual attention
5. Object substitution masking
6. General conclusion / Visuelle Aufmerksamkeit ist ein wichtiges kognitives Konzept für das tägliche Leben des Menschen. Es ist aber immer noch nicht komplett verstanden, so dass es ein langjähriges Ziel der Neurowissenschaften ist, das Phänomen grundlegend zu durchdringen. Gleichzeitig wird es aufgrund des mangelnden Verständnisses nur selten in maschinellen Sehsystemen in der Informatik eingesetzt. Das Verständnis von visueller Aufmerksamkeit ist jedoch eine komplexe Herausforderung, da Aufmerksamkeit äußerst vielfältige und scheinbar unterschiedliche Aspekte besitzt. Sie verändert multipel sowohl die neuronalen Feuerraten als auch das menschliche Verhalten. Daher ist es sehr schwierig, eine einheitliche Erklärung von visueller Aufmerksamkeit zu finden, welche für alle Aspekte gleichermaßen gilt. Um dieses Problem anzugehen, hat diese Arbeit das Ziel, einen gemeinsamen Satz neuronaler Mechanismen zu identifizieren, welche sowohl den neuronalen als auch den verhaltenstechnischen Aspekten zugrunde liegen. Die Mechanismen werden in neuro-computationalen Modellen simuliert, wodurch ein einzelnes Modellierungsframework entsteht, welches zum ersten Mal viele und verschiedenste Phänomene von visueller Aufmerksamkeit auf einmal erklären kann. Als Aspekte wurden in dieser Dissertation multiple neurophysiologische Effekte, Realwelt Objektlokalisation und ein visuelles Maskierungsparadigma (OSM) gewählt. In jedem dieser betrachteten Felder wird gleichzeitig der State-of-the-Art verbessert, um auch diesen Teilbereich von Aufmerksamkeit selbst besser zu verstehen. Die drei gewählten Gebiete zeigen, dass der Ansatz grundlegende neurophysiologische, funktionale und verhaltensbezogene Eigenschaften von visueller Aufmerksamkeit erklären kann. Da die gefundenen Mechanismen somit ausreichend sind, das Phänomen so umfassend zu erklären, könnten die Mechanismen vielleicht sogar das essentielle neuronale Substrat von visueller Aufmerksamkeit im Cortex darstellen. Für die Informatik stellt die Arbeit damit ein tiefergehendes Verständnis von visueller Aufmerksamkeit dar. Darüber hinaus liefert das Framework mit seinen neuronalen Mechanismen sogar eine Referenzimplementierung um Aufmerksamkeit in zukünftige Systeme integrieren zu können. Aufmerksamkeit könnte laut der vorliegenden Forschung sehr nützlich für diese sein, da es im Gehirn eine Aufgabenspezifische Optimierung des visuellen Systems bereitstellt. Dieser Aspekt menschlicher Wahrnehmung fehlt meist in den aktuellen, starken Computervisionssystemen, so dass eine Integration in aktuelle Systeme deren Leistung sprunghaft erhöhen und eine neue Klasse definieren dürfte.:1. General introduction
2. The state-of-the-art in modeling visual attention
3. Microcircuit model of attention
4. Object localization with a model of visual attention
5. Object substitution masking
6. General conclusion
|
Page generated in 0.101 seconds