• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 8
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 43
  • 11
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Le processus d'avulsion : Enregistrement stratigraphique et sédimentologique - Application aux éventails turbiditiques de l'Amazone et du Zaïre

Manson, Sandra 19 November 2009 (has links) (PDF)
Grâce aux données de forages ODP du Leg 155, corrélées aux coupes sismiques haute résolution de la campagne Lobestory d'Ifremer, l'éventail géant de l'Amazone est devenu une zone privilégiée pour étudier l'évolution des systèmes chenaux-levées. Les travaux antérieurs ont montré que le processus d'avulsion est un des processus fondamentaux de la construction des édifices turbiditiques. Il aboutit au changement brutal de cours d'un chenal et à son abandon en aval du point d'avulsion. Ce processus et les phénomènes qui en découlent (courants non-confinés, rupture de profil d'équilibre du chenal, ...) ainsi que les conditions topographiques spécifiques sont à l'origine d'une distribution sédimentaire particulière, avec des dépôts grossiers (HARPs) en semelle des chenaux. Dans le travail présenté, les paquets de réflecteurs de fortes amplitudes (HARPs) situés à la base de ces systèmes fortement aggradant, ont pu être caractérisés lithologiquement comme une amalgamation de petits unités sableuses et chenalisées probablement mises en place par une succession de courants de turbiditié de haute densité et très sableux. Ces travaux ont été complétés par l'étude sismique et bathymétrique des premiers et derniers stades d'une avulsion, c.à.d. brêche de la levée chenal père et aggradation/progradation de levées après dépôts des HARPs, aux localisations spécifiques de l'éventail du Zaïre. Ces résultats permettent de proposer un modèle d'évolution pour un système chenal-levées depuis les premiers stades de l'avulsion qui lui a donné naissance.
42

Temporal Variations in the Compliance of Gas Hydrate Formations

Roach, Lisa Aretha Nyala 20 March 2014 (has links)
Seafloor compliance is a non-intrusive geophysical method sensitive to the shear modulus of the sediments below the seafloor. A compliance analysis requires the computation of the frequency dependent transfer function between the vertical stress, produced at the seafloor by the ultra low frequency passive source-infra-gravity waves, and the resulting displacement, related to velocity through the frequency. The displacement of the ocean floor is dependent on the elastic structure of the sediments and the compliance function is tuned to different depths, i.e., a change in the elastic parameters at a given depth is sensed by the compliance function at a particular frequency. In a gas hydrate system, the magnitude of the stiffness is a measure of the quantity of gas hydrates present. Gas hydrates contain immense stores of greenhouse gases making them relevant to climate change science, and represent an important potential alternative source of energy. Bullseye Vent is a gas hydrate system located in an area that has been intensively studied for over 2 decades and research results suggest that this system is evolving over time. A partnership with NEPTUNE Canada allowed for the investigation of this possible evolution. This thesis describes a compliance experiment configured for NEPTUNE Canada’s seafloor observatory and its failure. It also describes the use of 203 days of simultaneously logged pressure and velocity time-series data, measured by a Scripps differential pressure gauge, and a Güralp CMG-1T broadband seismometer on NEPTUNE Canada’s seismic station, respectively, to evaluate variations in sediment stiffness near Bullseye. The evaluation resulted in a (- 4.49 x10-3± 3.52 x 10-3) % change of the transfer function of 3rd October, 2010 and represents a 2.88% decrease in the stiffness of the sediments over the period. This thesis also outlines a new algorithm for calculating the static compliance of isotropic layered sediments.
43

Temporal Variations in the Compliance of Gas Hydrate Formations

Roach, Lisa Aretha Nyala 20 March 2014 (has links)
Seafloor compliance is a non-intrusive geophysical method sensitive to the shear modulus of the sediments below the seafloor. A compliance analysis requires the computation of the frequency dependent transfer function between the vertical stress, produced at the seafloor by the ultra low frequency passive source-infra-gravity waves, and the resulting displacement, related to velocity through the frequency. The displacement of the ocean floor is dependent on the elastic structure of the sediments and the compliance function is tuned to different depths, i.e., a change in the elastic parameters at a given depth is sensed by the compliance function at a particular frequency. In a gas hydrate system, the magnitude of the stiffness is a measure of the quantity of gas hydrates present. Gas hydrates contain immense stores of greenhouse gases making them relevant to climate change science, and represent an important potential alternative source of energy. Bullseye Vent is a gas hydrate system located in an area that has been intensively studied for over 2 decades and research results suggest that this system is evolving over time. A partnership with NEPTUNE Canada allowed for the investigation of this possible evolution. This thesis describes a compliance experiment configured for NEPTUNE Canada’s seafloor observatory and its failure. It also describes the use of 203 days of simultaneously logged pressure and velocity time-series data, measured by a Scripps differential pressure gauge, and a Güralp CMG-1T broadband seismometer on NEPTUNE Canada’s seismic station, respectively, to evaluate variations in sediment stiffness near Bullseye. The evaluation resulted in a (- 4.49 x10-3± 3.52 x 10-3) % change of the transfer function of 3rd October, 2010 and represents a 2.88% decrease in the stiffness of the sediments over the period. This thesis also outlines a new algorithm for calculating the static compliance of isotropic layered sediments.

Page generated in 0.063 seconds